IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3856-d527559.html
   My bibliography  Save this article

Sustainability Assessment with Integrated Circular Economy Principles: A Toy Case Study

Author

Listed:
  • Rebeka Kovačič Lukman

    (Faculty of Logistics, University of Maribor, Mariborska c. 7, SI-3000 Celje, Slovenia
    Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška c. 160, SI-2000 Maribor, Slovenia)

  • Vasja Omahne

    (Faculty of Logistics, University of Maribor, Mariborska c. 7, SI-3000 Celje, Slovenia)

  • Damjan Krajnc

    (Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia)

Abstract

When considering the sustainability of production processes, research studies usually emphasise environmental impacts and do not adequately address economic and social impacts. Toy production is no exception when it comes to assessing sustainability. Previous research on toys has focused solely on assessing environmental aspects and neglected social and economic aspects. This paper presents a sustainability assessment of a toy using environmental life cycle assessment, life cycle costing, and social life cycle assessment. We conducted an inventory analysis and sustainability impact assessment of the toy to identify the hotspots of the system. The main environmental impacts are eutrophication, followed by terrestrial eco-toxicity, acidification, and global warming. The life cycle costing approach examined the economic aspect of the proposed design options for toys, while the social assessment of the alternative designs revealed social impacts along the product life cycle. In addition, different options based on the principles of the circular economy were analysed and proposed in terms of substitution of materials and shortening of transport distances for the toy studied.

Suggested Citation

  • Rebeka Kovačič Lukman & Vasja Omahne & Damjan Krajnc, 2021. "Sustainability Assessment with Integrated Circular Economy Principles: A Toy Case Study," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3856-:d:527559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miriam Jankalová & Radoslav Jankal, 2018. "Sustainability Assessment According to the Selected Business Excellence Models," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    2. Burcin Atilgan & Adisa Azapagic, 2016. "Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis," Energies, MDPI, vol. 9(1), pages 1-24, January.
    3. Samir Mili & Javier Martínez-Vega, 2019. "Accounting for Regional Heterogeneity of Agricultural Sustainability in Spain," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    4. Catherine Benoît Norris & Gregory A. Norris & Deana Aulisio, 2014. "Efficient Assessment of Social Hotspots in the Supply Chains of 100 Product Categories Using the Social Hotspots Database," Sustainability, MDPI, vol. 6(10), pages 1-12, October.
    5. Xuejiao Ma & Qichuan Jiang, 2019. "How to Balance the Trade-off between Economic Development and Climate Change?," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    6. Cristiana Peano & Nadia Tecco & Egidio Dansero & Vincenzo Girgenti & Francesco Sottile, 2015. "Evaluating the Sustainability in Complex Agri-Food Systems: The SAEMETH Framework," Sustainability, MDPI, vol. 7(6), pages 1-21, May.
    7. Mijoh A. Gbededo & Kapila Liyanage, 2018. "Identification and Alignment of the Social Aspects of Sustainable Manufacturing with the Theory of Motivation," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    8. Maria Björklund & Helena Forslund, 2019. "Challenges Addressed by Swedish Third-Party Logistics Providers Conducting Sustainable Logistics Business Cases," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    9. Atilgan, Burcin & Azapagic, Adisa, 2016. "An integrated life cycle sustainability assessment of electricity generation in Turkey," Energy Policy, Elsevier, vol. 93(C), pages 168-186.
    10. Ilinitch, Anne Y. & Soderstrom, Naomi S. & E. Thomas, Tom, 1998. "Measuring corporate environmental performance," Journal of Accounting and Public Policy, Elsevier, vol. 17(4-5), pages 383-408.
    11. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    12. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Tietz Cazeri & Izabela Simon Rampasso & Walter Leal Filho & Osvaldo Luiz Gonçalves Quelhas & Milena Pavan Serafim & Rosley Anholon, 2021. "Gender Wage Gaps in Brazilian Companies Listed in the Ibovespa Index: A Critical Analysis," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    2. Nirvana A. Marting Vidaurre & Iris Lewandowski & Jan Lask, 2022. "Identifying methodological challenges in the social risk assessment of cellulosic ethanol value chains," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1233-1246, August.
    3. Haicheng Jia & Ling Liang & Jiqing Xie & Jianyun Zhang, 2022. "Environmental Effects of Technological Improvements in Polysilicon Photovoltaic Systems in China—A Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    4. Julian Gaus & Sven Wehking & Andreas H. Glas & Michael Eßig, 2022. "Economic Sustainability by Using Life Cycle Cost Information in the Buying Center: Insights from the Public Sector," Sustainability, MDPI, vol. 14(3), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Life Cycle Sustainability Assessment of Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective Study," Energies, MDPI, vol. 15(23), pages 1-16, December.
    2. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    3. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    4. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    5. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    6. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    7. Malaquias Zildo António Tsambe & Cássio Florisbal de Almeida & Cássia Maria Lie Ugaya & Luiz Fernando de Abreu Cybis, 2021. "Application of Life Cycle Sustainability Assessment to Used Lubricant Oil Management in South Brazilian Region," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    8. Irene Huertas-Valdivia & Anna Maria Ferrari & Davide Settembre-Blundo & Fernando E. García-Muiña, 2020. "Social Life-Cycle Assessment: A Review by Bibliometric Analysis," Sustainability, MDPI, vol. 12(15), pages 1-25, August.
    9. Roope Husgafvel, 2021. "Exploring Social Sustainability Handprint—Part 1: Handprint and Life Cycle Thinking and Approaches," Sustainability, MDPI, vol. 13(20), pages 1-36, October.
    10. Gabriela Shirkey & Megan Belongeay & Susie Wu & Xiaoguang Ma & Hassan Tavakol & Annick Anctil & Sandra Marquette-Pyatt & Rodney A. Stewart & Parikith Sinha & Richard Corkish & Jiquan Chen & Ilke Celik, 2021. "An Environmental and Societal Analysis of the US Electrical Energy Industry Based on the Water–Energy Nexus," Energies, MDPI, vol. 14(9), pages 1-20, May.
    11. Kavitha Shanmugam & Anju Baroth & Sachin Nande & Dalia M. M. Yacout & Mats Tysklind & Venkata K. K. Upadhyayula, 2019. "Social Cost Benefit Analysis of Operating Compressed Biomethane (CBM) Transit Buses in Cities of Developing Nations: A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    12. António A. Martins & Marta Simaria & Joaquim Barbosa & Ricardo Barbosa & Daniela T. Silva & Cristina S. Rocha & Teresa M. Mata & Nídia S. Caetano, 2018. "Life cycle assessment tool of electricity generation in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 129-143, December.
    13. Rafaella de Souza Henriques & Rodney Rezende Saldanha & Lineker Max Goulart Coelho, 2019. "An Air Pollutant Emission Analysis of Brazilian Electricity Production Projections and Other Countries," Energies, MDPI, vol. 12(15), pages 1-19, July.
    14. Daniel González-Prieto & Yolanda Fernández-Nava & Elena Marañón & Maria Manuela Prieto, 2020. "Effect of Decarbonisation Policies and Climate Change on Environmental Impacts due to Heating and Cooling in a Single-Family House," Sustainability, MDPI, vol. 12(9), pages 1-22, April.
    15. Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
    16. Markéta Šerešová & Jiří Štefanica & Monika Vitvarová & Kristina Zakuciová & Petr Wolf & Vladimír Kočí, 2020. "Life Cycle Performance of Various Energy Sources Used in the Czech Republic," Energies, MDPI, vol. 13(21), pages 1-17, November.
    17. Uz Zaman, Qamar & Zhao, Yuhuan & Zaman, Shah & Batool, Kiran & Nasir, Rabiya, 2024. "Reviewing energy efficiency and environmental consciousness in the minerals industry Amidst digital transition: A comprehensive review," Resources Policy, Elsevier, vol. 91(C).
    18. Marwa Hannouf & Getachew Assefa, 2018. "A Life Cycle Sustainability Assessment-Based Decision-Analysis Framework," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    19. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    20. Moses Nyakuwanika & Huibrecht Margaretha van der Poll & John Andrew van der Poll, 2021. "A Conceptual Framework for Greener Goldmining through Environmental Management Accounting Practices (EMAPs): The Case of Zimbabwe," Sustainability, MDPI, vol. 13(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3856-:d:527559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.