IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3487-d521589.html
   My bibliography  Save this article

Calibrating the Wiedemann 99 Car-Following Model for Bicycle Traffic

Author

Listed:
  • Heather Kaths

    (Chair of Traffic Engineering and Control, TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich (TUM), 80333 Munich, Germany)

  • Andreas Keler

    (Chair of Traffic Engineering and Control, TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich (TUM), 80333 Munich, Germany)

  • Klaus Bogenberger

    (Chair of Traffic Engineering and Control, TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich (TUM), 80333 Munich, Germany)

Abstract

Car-following models are used in microscopic simulation tools to calculate the longitudinal acceleration of a vehicle based on the speed and position of a leading vehicle in the same lane. Bicycle traffic is usually included in microscopic traffic simulations by adjusting and calibrating behavior models developed for motor vehicle traffic. However, very little work has been carried out to examine the following behavior of bicyclists, calibrate following models to fit this observed behavior, and determine the validity of these calibrated models. In this paper, microscopic trajectory data collected in a bicycle simulator study are used to estimate the following parameters of the psycho-physical Wiedemann 99 car-following model implemented in PTV Vissim. The Wiedemann 99 model is selected due to the larger number of assessable parameters and the greater possibility to calibrate the model to fit observed behavior. The calibrated model is validated using the indicator average queue dissipation time at a traffic light on the facilities ranging in width between 1.5 m to 2.5 m. Results show that the parameter set derived from the microscopic trajectory data creates more realistic simulated bicycle traffic than a suggested parameter set. However, it was not possible to achieve the large variation in average queue dissipation times that was observed in the field with either of the tested parameter sets.

Suggested Citation

  • Heather Kaths & Andreas Keler & Klaus Bogenberger, 2021. "Calibrating the Wiedemann 99 Car-Following Model for Bicycle Traffic," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3487-:d:521589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios Grigoropoulos & Seyed Abdollah Hosseini & Andreas Keler & Heather Kaths & Matthias Spangler & Fritz Busch & Klaus Bogenberger, 2021. "Traffic Simulation Analysis of Bicycle Highways in Urban Areas," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    2. Tiziana Campisi & Giovanna Acampa & Giorgia Marino & Giovanni Tesoriere, 2020. "Cycling Master Plans in Italy: The I-BIM Feasibility Tool for Cost and Safety Assessments," Sustainability, MDPI, vol. 12(11), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monika Ziemska, 2021. "Exhaust Emissions and Fuel Consumption Analysis on the Example of an Increasing Number of HGVs in the Port City," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    2. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrícia Janošková & Filip Bajza & Katarína Repková-Štofková & Zuzana Štofková & Erika Loučanová, 2024. "Business Models of Public Smart Services for Sustainable Development," Sustainability, MDPI, vol. 16(17), pages 1-36, August.
    2. Tiziana Campisi & Socrates Basbas & Anastasios Skoufas & Nurten Akgün & Dario Ticali & Giovanni Tesoriere, 2020. "The Impact of COVID-19 Pandemic on the Resilience of Sustainable Mobility in Sicily," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    3. Biancardo, Salvatore Antonio & Gesualdi, Michele & Savastano, Davide & Intignano, Mattia & Henke, Ilaria & Pagliara, Francesca, 2023. "An innovative framework for integrating Cost-Benefit Analysis (CBA) within Building Information Modeling (BIM)," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    4. Lei Zhang & Shengrui Zhang & Bei Zhou & Yan Huang & Dan Zhao & Shuaiyang Jiao, 2022. "Exploring Unobserved Heterogeneity in Cyclists’ Occupying Motorized Vehicle Lane Behaviors at Different Bike Facility Configurations," IJERPH, MDPI, vol. 19(2), pages 1-22, January.
    5. Piotr Kędziorek & Zbigniew Kasprzyk & Mariusz Rychlicki & Adam Rosiński, 2023. "Analysis and Evaluation of Methods Used in Measuring the Intensity of Bicycle Traffic," Energies, MDPI, vol. 16(2), pages 1-18, January.
    6. Lorenzo Diana & Saverio D’Auria & Giovanna Acampa & Giorgia Marino, 2022. "Assessment of Disused Public Buildings: Strategies and Tools for Reuse of Healthcare Structures," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    7. Chiharu Misaki & Daisuke Hara & Noboru Katayama & Kiyoshi Dowaki, 2020. "Improvement of Power Capacity of Electric-Assisted Bicycles Using Fuel Cells with Metal Hydride," Energies, MDPI, vol. 13(23), pages 1-17, November.
    8. Michela Tiboni & Silvia Rossetti & David Vetturi & Vincenza Torrisi & Francesco Botticini & Marco Domenico Schaefer, 2021. "Urban Policies and Planning Approaches for a Safer and Climate Friendlier Mobility in Cities: Strategies, Initiatives and Some Analysis," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    9. Dimitra Chondrogianni & Yorgos J. Stephanedes & Panoraia Fatourou, 2023. "Assessing Cycling Accessibility in Urban Areas through the Implementation of a New Cycling Scheme," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    10. Dongdong Feng & Lin Cheng & Mingyang Du, 2020. "Exploring the Impact of Dockless Bikeshare on Docked Bikeshare—A Case Study in London," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    11. Sarbast Moslem & Tiziana Campisi & Agnieszka Szmelter-Jarosz & Szabolcs Duleba & Kh Md Nahiduzzaman & Giovanni Tesoriere, 2020. "Best–Worst Method for Modelling Mobility Choice after COVID-19: Evidence from Italy," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    12. Ali Soltani & Andrew Allan & Masoud Javadpoor & Jaswanth Lella, 2022. "Space Syntax in Analysing Bicycle Commuting Routes in Inner Metropolitan Adelaide," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    13. Qiyao Yang & Jun Cai & Tao Feng & Zhengying Liu & Harry Timmermans, 2021. "Bikeway Provision and Bicycle Commuting: City-Level Empirical Findings from the US," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    14. Francesca Moraci & Maurizio Francesco Errigo & Celestina Fazia & Tiziana Campisi & Francesco Castelli, 2020. "Cities under Pressure: Strategies and Tools to Face Climate Change and Pandemic," Sustainability, MDPI, vol. 12(18), pages 1-31, September.
    15. Iñigo Leon & Maialen Sagarna & Fernando Mora & Juan Pedro Otaduy, 2021. "BIM Application for Sustainable Teaching Environment and Solutions in the Context of COVID-19," Sustainability, MDPI, vol. 13(9), pages 1-29, April.
    16. Andreas Nikiforiadis & Georgia Ayfantopoulou & Afroditi Stamelou, 2020. "Assessing the Impact of COVID-19 on Bike-Sharing Usage: The Case of Thessaloniki, Greece," Sustainability, MDPI, vol. 12(19), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3487-:d:521589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.