IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2122-d500526.html
   My bibliography  Save this article

Forage Yield and Quality of Winter Canola–Pea Mixed Cropping System

Author

Listed:
  • Sultan Begna

    (USDA-ARS, San Joaquin Valley Agricultural Science Center-Water Management Research Unit, Parlier, CA 93648, USA)

  • Sangamesh Angadi

    (Agricultural Science Center at Clovis, New Mexico State University, Clovis, NM 88101, USA)

  • Abdel Mesbah

    (Agricultural Science Center at Clovis, New Mexico State University, Clovis, NM 88101, USA)

  • Rangappa Mathada Umesh

    (University of Agricultural Sciences, Raichur, Karnataka 584104, India)

  • Michael Stamm

    (Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA)

Abstract

Forage crop–dairy farming is an important agro-industry across the world. This system is intensive with high-input forage crops. In the United States (US) Southern Great Plains, the system is based primarily on high-input annual grass-type crops in monocropping approaches and requires diverse low-input broadleaf crops for strengthening its sustainability. Winter canola ( Brassica napus L. ) and pea ( Pisum sativum L. ) have the potential to provide forage crop diversity options with high forage yields of high quality. Winter canola and pea in mono- and mixed-cropping approaches at seeding ratios of canola/pea at 0:100, 25:75, 50:50, 75:25, and 100:0 were studied for yield and quality in 2015 and 2016 in Clovis, New Mexico (NM). Averaged over years, canola–pea at 75:25 and 50:50 seeding ratios produced similar biomass forage yield but higher than mono-pea by 43% and canola–pea at 25:75 and mono-canola cropping by 8%. The land equivalent ratio of all mixed-cropping treatments exceeded 1.0, with canola–pea at the 50:50 seeding ratio recording a land equivalent ratio of 1.15, indicating that mixed-cropping systems are better users of land resources. Total digestible nutrients and relative feed value were higher in canola–pea mixed cropping than in mono-canola and mono-pea cropping. Canola–pea mixed cropping achieved high yields (13.3 to 14.7 Mg·ha −1 ) with improved forage quality, as well as improved crop and land productivity, with the potential to improve mechanical harvestability of vining pea, and strengthen the diversity and sustainability of forage crop–dairy farming in the Southern Great Plains under limited irrigation input of ~300 mm.

Suggested Citation

  • Sultan Begna & Sangamesh Angadi & Abdel Mesbah & Rangappa Mathada Umesh & Michael Stamm, 2021. "Forage Yield and Quality of Winter Canola–Pea Mixed Cropping System," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2122-:d:500526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steward, David R. & Allen, Andrew J., 2016. "Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110," Agricultural Water Management, Elsevier, vol. 170(C), pages 36-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. R. Umesh & Sangu Angadi & Sultan Begna & Prasanna Gowda, 2022. "Planting Density and Geometry Effect on Canopy Development, Forage Yield and Nutritive Value of Sorghum and Annual Legumes Intercropping," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    2. Maw Ni Soe Htet & Honglu Wang & Vivek Yadav & Thongsouk Sompouviseth & Baili Feng, 2022. "Legume Integration Augments the Forage Productivity and Quality in Maize-Based System in the Loess Plateau Region," Sustainability, MDPI, vol. 14(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    3. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Perez-Quesada, Gabriela & Hendricks, Nathan P. & Steward, David R., 2020. "Quantifying the economic costs of High Plains Aquifer depletion," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304225, Agricultural and Applied Economics Association.
    5. Kishore, Prabhat & Singh, Dharm Raj & Srivastava, Shivendra & Kumar, Pramod & Jha, Girish Kumar, 2021. "Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India," 2021 Conference, August 17-31, 2021, Virtual 315198, International Association of Agricultural Economists.
    6. Reyes, Julian & Elias, Emile & Haacker, Erin & Kremen, Amy & Parker, Lauren & Rottler, Caitlin, 2020. "Assessing agricultural risk management using historic crop insurance loss data over the ogallala aquifer," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Perez-Quesada, Gabriela & Hendricks, Nathan P., 2021. "Lessons from local governance and collective action efforts to manage irrigation withdrawals in Kansas," Agricultural Water Management, Elsevier, vol. 247(C).
    8. Caleb M. Koch & Heinrich H. Nax, 2022. "Groundwater Usage and Strategic Complements: Part I (Instrumental Variables)," Games, MDPI, vol. 13(5), pages 1-19, October.
    9. Haacker, Erin M.K. & Cotterman, Kayla A. & Smidt, Samuel J. & Kendall, Anthony D. & Hyndman, David W., 2019. "Effects of management areas, drought, and commodity prices on groundwater decline patterns across the High Plains Aquifer," Agricultural Water Management, Elsevier, vol. 218(C), pages 259-273.
    10. Wenjie Geng & Xiaohui Jiang & Yuxin Lei & Jinyan Zhang & Huan Zhao, 2021. "The Allocation of Water Resources in the Midstream of Heihe River for the “97 Water Diversion Scheme” and the “Three Red Lines”," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    11. Quintana Ashwell, Nicolas E. & Peterson, Jeffrey M. & Hendricks, Nathan P., 2018. "Optimal groundwater management under climate change and technical progress," Resource and Energy Economics, Elsevier, vol. 51(C), pages 67-83.
    12. Funk, Bryana & Amer, Saud A. & Ward, Frank A., 2023. "Sustainable aquifer management for food security," Agricultural Water Management, Elsevier, vol. 281(C).
    13. Kishore, Prabhat & Singh, Dharam R. & Srivastava, Shivendra & Kumar, Arun & Prakash, 2021. "Food-Groundwater-Energy nexus in Indian agriculture: Empirical evidence from Uttar Pradesh, India," 2021 ASAE 10th International Conference (Virtual), January 11-13, Beijing, China 329408, Asian Society of Agricultural Economists (ASAE).
    14. R. Aaron Hrozencik & Jordan F. Suter & Paul J. Ferraro & Nathan Hendricks, 2024. "Social comparisons and groundwater use: Evidence from Colorado and Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 946-966, March.
    15. Ali Ajaz & Sumon Datta & Scott Stoodley, 2020. "High Plains Aquifer–State of Affairs of Irrigated Agriculture and Role of Irrigation in the Sustainability Paradigm," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    16. Zunaira Asif & Zhi Chen & Rehan Sadiq & Yinying Zhu, 2023. "Climate Change Impacts on Water Resources and Sustainable Water Management Strategies in North America," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2771-2786, May.
    17. Sadia A. Jame & Laura C. Bowling, 2020. "Groundwater Doctrine and Water Withdrawals in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4037-4052, October.
    18. Mir, R. & Azizyan, G. & Massah, A. & Gohari, A., 2022. "Fossil water: Last resort to resolve long-standing water scarcity?," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2122-:d:500526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.