IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1915-d497340.html
   My bibliography  Save this article

Sustainability Assessment of Municipal Solid Waste in Baltimore USA

Author

Listed:
  • Samuel O. Alamu

    (Department of Industrial and Systems Engineering, Morgan State University, Baltimore, MD 21251, USA)

  • Ayodeji Wemida

    (Department of Electrical and Computer Engineering, Morgan State University, Baltimore, MD 21251, USA)

  • Tiyobistiya Tsegaye

    (Department of Civil Engineering, Morgan State University, Baltimore, MD 21251, USA)

  • Gbekeloluwa Oguntimein

    (Department of Civil Engineering, Morgan State University, Baltimore, MD 21251, USA)

Abstract

Sustainability assessment of municipal solid waste management requires a holistic approach in evaluating the impacts of current technology and processes. In this study, the sustainability analysis of the Municipal Solid Waste (MSW) incineration plant in Baltimore city was performed to determine its environmental, economic, and social impacts. The city’s major waste-to-energy generation plant has benefitted the city of Baltimore since inception till date in terms of waste processing, resulting in electricity and steam production for more than 40,000 homes and over 200 businesses. The life cycle impact of the incineration plant was analyzed using the Simapro life cycle assessment (LCA) software with the Building for Environmental and Economic Sustainability (BEES) database for correlation. The results obtained upon analysis show larger values of Global Warming Potential and eutrophication potential as 6.46 × 10 8 Gg of CO 2 equivalence and 2.27 × 10 6 Gg N equivalence, respectively. These values resulted from the higher amount of fossil CO 2 and NOx emitted from the plant. The acidification potential of 1.66 × 10 17 H + mmole eq resulted from the SO 2 emitted by the incineration plant. The incineration plant exceeded the limitations set by the Environmental Protection Agency (EPA) on NOx (150 ppm), which is detrimental to the well-being of people as shown by this study. Installing an improved processing technology such as a Selected Catalytic Reactor (SCR) can drastically reduce the NOx emission to 45 ppm. Life Cycle Assessment was confirmed suitable in evaluating the environmental impacts of the MSW-to-energy treatment approach.

Suggested Citation

  • Samuel O. Alamu & Ayodeji Wemida & Tiyobistiya Tsegaye & Gbekeloluwa Oguntimein, 2021. "Sustainability Assessment of Municipal Solid Waste in Baltimore USA," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1915-:d:497340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios Banias & Maria Batsioula & Charisios Achillas & Sotiris I. Patsios & Konstantinos N. Kontogiannopoulos & Dionysis Bochtis & Nicolas Moussiopoulos, 2020. "A Life Cycle Analysis Approach for the Evaluation of Municipal Solid Waste Management Practices: The Case Study of the Region of Central Macedonia, Greece," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    2. Jozef Švajlenka & Mária Kozlovská & Terézia Pošiváková, 2018. "Analysis of Selected Building Constructions Used in Industrial Construction in Terms of Sustainability Benefits," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hani A. Abu-Qdais & Anna I. Kurbatova, 2022. "The Role of Eco-Industrial Parks in Promoting Circular Economy in Russia: A Life Cycle Approach," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    2. Deborah Panepinto & Marco Ravina & Mariachiara Zanetti, 2022. "An Overview of Thermal Treatment Emissions with a Particular Focus on CO 2 Parameter," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Perkoulidis & A. Malamakis & G. Banias & N. Moussiopoulos, 2022. "Development of a Methodological Framework for the Evaluation of the Material and Energy Recovery Potential of Municipal Solid Waste Management: Implementation in Five Greek Regions," Circular Economy and Sustainability, Springer, vol. 2(1), pages 313-326, March.
    2. Rakan Alyamani & Suzanna Long, 2020. "The Application of Fuzzy Analytic Hierarchy Process in Sustainable Project Selection," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    3. Jarosław Górecki & Manuel Díaz-Madroñero, 2020. "Who Risks and Wins?—Simulated Cost Variance in Sustainable Construction Projects," Sustainability, MDPI, vol. 12(8), pages 1-31, April.
    4. Pollyanna Fernandes Bianchi & Víctor Yepes & Paulo Cezar Vitorio & Moacir Kripka, 2021. "Study of Alternatives for the Design of Sustainable Low-Income Housing in Brazil," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    5. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    6. Ahmed Farouk Kineber & Idris Othman & Ayodeji Emmanuel Oke & Nicholas Chileshe & Mohanad Kamil Buniya, 2020. "Identifying and Assessing Sustainable Value Management Implementation Activities in Developing Countries: The Case of Egypt," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    7. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    8. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    9. Xuan Zhang & Deyuan Zhou & Hesheng Tang & Xiao Han, 2019. "Experimental study of grout defect identification in precast column based on wavelet packet analysis," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
    10. Yi Gao & Gaosheng Yang & Qiuhao Xie, 2020. "Spatial-Temporal Evolution and Driving Factors of Green Building Development in China," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    11. Federica Paoli & Francesca Pirlone & Ilenia Spadaro, 2022. "Indicators for the Circular City: A Review and a Proposal," Sustainability, MDPI, vol. 14(19), pages 1-28, September.
    12. Jozef Gašparík & Vít Motyčka & Patrik Šťastný & Sylvia Szalayová, 2021. "Multi-Criteria Optimization of Mechanized Earth Processes and Its Impact on Economic and Environmental Sustainability," Sustainability, MDPI, vol. 14(1), pages 1-18, December.
    13. Monika Kulisz & Justyna Kujawska, 2020. "Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    14. Behnam Dastjerdi & Vladimir Strezov & Ravinder Kumar & Masud Behnia, 2022. "Environmental Impact Assessment of Solid Waste to Energy Technologies and Their Perspectives in Australia," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    15. Antonio Valero & Jorge Torrubia & Miguel Ángel Anía & Alicia Torres, 2021. "Assessing Urban Metabolism through MSW Carbon Footprint and Conceptualizing Municipal-Industrial Symbiosis—The Case of Zaragoza City, Spain," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    16. Xiaojing Meng & Beibei Wei & Yingni Zhai, 2020. "Sensitivity Analysis of Envelope Design Parameters of Industrial Buildings with Natural Ventilation," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    17. Paul Mansell & Simon P. Philbin & Efrosyni Konstantinou, 2020. "Delivering UN Sustainable Development Goals’ Impact on Infrastructure Projects: An Empirical Study of Senior Executives in the UK Construction Sector," Sustainability, MDPI, vol. 12(19), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1915-:d:497340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.