IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v2y2022i1d10.1007_s43615-021-00083-4.html
   My bibliography  Save this article

Development of a Methodological Framework for the Evaluation of the Material and Energy Recovery Potential of Municipal Solid Waste Management: Implementation in Five Greek Regions

Author

Listed:
  • G. Perkoulidis

    (Aristotle University)

  • A. Malamakis

    (Aristotle University)

  • G. Banias

    (Institute for Bio-economy and Agri-technology (iBO), Centre for Research and Technology Hellas)

  • N. Moussiopoulos

    (Aristotle University)

Abstract

Problem According to the Landfill Directive, the proportion of municipal waste disposed of in landfills should be reduced to 10% w/w or less of the total amount of municipal waste generated by 2035. It should be highlighted that even though the regional waste management plans in Greece took into consideration the recycling targets set by the European Union, the proportion of municipal waste disposed of by landfilling was about 80% w/w in 2020. Purpose The present study aims to introduce a methodological framework for the calculation of residues from facilities foreseen in regional waste management plans and the potential of its utilization for energy recovery. Methodology The methodology for the development and implementation of the decision support tool concerned the registration of treatment facilities, the estimation of recyclables and residues derived from them, the calculation of maximum volume or residues for achieving the recycling targets and the circular economy objective, the assessment of quality composition of residues, and the assessment of energy recovery potential. Findings Up to 270 GWh of electricity per year could be generated from a supposed thermal treatment of residues from recycling, while targets concerning recycling and waste management in the frame of circular economy objective can been achieved. Conclusions The proposed methodological framework can be utilized as a decision support tool by relevant decision makers, and can be applied both for the evaluation of the regional waste management plans, which directly affect national recycling and circular economy targets set by European Union environment policy.

Suggested Citation

  • G. Perkoulidis & A. Malamakis & G. Banias & N. Moussiopoulos, 2022. "Development of a Methodological Framework for the Evaluation of the Material and Energy Recovery Potential of Municipal Solid Waste Management: Implementation in Five Greek Regions," Circular Economy and Sustainability, Springer, vol. 2(1), pages 313-326, March.
  • Handle: RePEc:spr:circec:v:2:y:2022:i:1:d:10.1007_s43615-021-00083-4
    DOI: 10.1007/s43615-021-00083-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-021-00083-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-021-00083-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marzena Smol & Joanna Duda & Agnieszka Czaplicka-Kotas & Dominika Szołdrowska, 2020. "Transformation towards Circular Economy (CE) in Municipal Waste Management System: Model Solutions for Poland," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    2. Hanna Helander & Anna Petit‐Boix & Sina Leipold & Stefan Bringezu, 2019. "How to monitor environmental pressures of a circular economy: An assessment of indicators," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1278-1291, October.
    3. Cristian Silviu Banacu & Mihail Busu & Raluca Ignat & Carmen Lenuta Trica, 2019. "Entrepreneurial Innovation Impact on Recycling Municipal Waste. A Panel Data Analysis at the EU Level," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    4. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    5. Georgios Banias & Maria Batsioula & Charisios Achillas & Sotiris I. Patsios & Konstantinos N. Kontogiannopoulos & Dionysis Bochtis & Nicolas Moussiopoulos, 2020. "A Life Cycle Analysis Approach for the Evaluation of Municipal Solid Waste Management Practices: The Case Study of the Region of Central Macedonia, Greece," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    6. Mihail Busu & Carmen Lenuta Trica, 2019. "Sustainability of Circular Economy Indicators and Their Impact on Economic Growth of the European Union," Sustainability, MDPI, vol. 11(19), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Năstase Luiza Loredana, 2023. "Circularity and Municipal Waste in Romania An Evaluation between 2011 and 2021," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 1509-1518, July.
    2. Cristian Teodor & Carmen Lenuta Trica & Raluca Ignat & Raluca-Mihaela Dracea, 2020. "Good Practices of Efficient Packaging Waste Management," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(55), pages 937-937, August.
    3. Sevigné Itoiz, E. & Gasol, C.M & Farreny, R. & Rieradevall, J. & Gabarrell, X., 2013. "CO2ZW: Carbon footprint tool for municipal solid waste management for policy options in Europe. Inventory of Mediterranean countries," Energy Policy, Elsevier, vol. 56(C), pages 623-632.
    4. Emmanuel Ebo Arthur & Solomon Gyamfi & Wolfgang Gerstlberger & Jan Stejskal & Viktor Prokop, 2023. "Towards Circular Economy: Unveiling Heterogeneous Effects of Government Policy Stringency, Environmentally Related Innovation, and Human Capital within OECD Countries," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    5. Marzena Smol, 2023. "Inventory and Comparison of Performance Indicators in Circular Economy Roadmaps of the European Countries," Circular Economy and Sustainability, Springer, vol. 3(1), pages 557-584, March.
    6. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    7. Adriano Cordisco & Riccardo Melloni & Lucia Botti, 2022. "Sustainable Circular Economy for the Integration of Disadvantaged People: A Preliminary Study on the Reuse of Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    8. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    9. Katarzyna Pactwa & Justyna Woźniak & Michał Dudek, 2020. "Sustainable Social and Environmental Evaluation of Post-Industrial Facilities in a Closed Loop Perspective in Coal-Mining Areas in Poland," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    10. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability, Springer, vol. 3(1), pages 125-166, March.
    11. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    12. Elena C. Prenovitz & Peter K. Hazlett & Chandler S. Reilly, 2023. "Can Markets Improve Recycling Performance? A Cross-Country Regression Analysis and Case Studies," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    13. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    14. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    15. Antonio Gattuso & Alessandra De Bruno & Amalia Piscopo & Simone Santacaterina & Maria Josè Frutos & Marco Poiana, 2024. "Bergamot Pomace Flour: From Byproduct to Bioactive Ingredient for Pasta Production," Sustainability, MDPI, vol. 16(17), pages 1-13, September.
    16. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    17. Eva Mihaliková & Marcela Taušová & Katarína Čulková, 2022. "Public Expenses and Investment in Environmental Protection and Its Impact on Waste Management," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    18. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    19. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    20. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:2:y:2022:i:1:d:10.1007_s43615-021-00083-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.