IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1680-d493366.html
   My bibliography  Save this article

Mathematical Analysis of Criteria for Maintenance of Technical Systems in the Function of Achieving Sustainability

Author

Listed:
  • Goran Otić

    (Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia)

  • Oliver Momčilović

    (Department of Engineering Management, Faculty of Information Technology and Engineering, University “Union-Nikola Tesla”, Belgrade, Jurija Gagarina 149a, 11070 New Belgrade, Serbia)

  • Ljiljana Radovanović

    (Department of Mechanical Engineering, Technical Faculty “Mihajlo Pupin”, University of Novi Sad, Đure Đakovića bb, 23000 Zrenjanin, Serbia)

  • Goran Jovanov

    (Department of Forensics, University of Criminal Investigation and Police Studies, Cara Dušana 196, 11080 Belgrade, Serbia)

  • Dragica Radosav

    (Department of Information Technology, Technical Faculty “Mihajlo Pupin”, University of Novi Sad, Đure Đakovića bb, 23000 Zrenjanin, Serbia)

  • Jasmina Pekez

    (Department of Mechanical Engineering, Technical Faculty “Mihajlo Pupin”, University of Novi Sad, Đure Đakovića bb, 23000 Zrenjanin, Serbia)

Abstract

Achieving sustainable development requires strategic efforts involving the entire organization. Maintenance efforts also play an important role. Company management needs to understand and develop an appropriate strategy to achieve sustainable development by applying maintenance performance measurements. The aim of this paper is to present possible ways of analyzing and ranking the impact of certain criteria with respect to achieving sustainability. The paper uses the method of Structural Equation Modeling—SEM in order to determine the most influential variable on the sustainability of maintenance of technical systems. Based on the set theoretical system model, for all its variables in the model, statements were made that describe them, on which 136 respondents gave their views (from 1 to 5, Likert scale) in the territory of the Republic of Serbia. An intuitive F-DEMATEL method was also used to prioritize variables. A team of 10 experts in the field of maintenance of technical systems was compared the criteria A—Application of technical diagnostics, B—Management of maintenance resources, C—Maintenance process planning, and the dependent variable D—Sustainability of maintenance of technical systems. According to experts, the importance of the criteria coincides with the results obtained by a survey with 136 respondents.

Suggested Citation

  • Goran Otić & Oliver Momčilović & Ljiljana Radovanović & Goran Jovanov & Dragica Radosav & Jasmina Pekez, 2021. "Mathematical Analysis of Criteria for Maintenance of Technical Systems in the Function of Achieving Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1680-:d:493366
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeki Murat Çınar & Abubakar Abdussalam Nuhu & Qasim Zeeshan & Orhan Korhan & Mohammed Asmael & Babak Safaei, 2020. "Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-42, October.
    2. Rosario Domingo & Sergio Aguado, 2015. "Overall Environmental Equipment Effectiveness as a Metric of a Lean and Green Manufacturing System," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mimica R. Milošević & Miloš M. Nikolić & Dušan M. Milošević & Violeta Dimić, 2022. "Managing Resources Based on Influential Indicators for Sustainable Economic Development: A Case Study in Serbia," Sustainability, MDPI, vol. 14(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Polorecka & Jozef Kubas & Pavel Danihelka & Katarina Petrlova & Katarina Repkova Stofkova & Katarina Buganova, 2021. "Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    2. Olcay Özge Ersöz & Ali Fırat İnal & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2022. "A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    3. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    4. André Marie Mbakop & Joseph Voufo & Florent Biyeme & Jean Raymond Lucien Meva’a, 2022. "Moving to a Flexible Shop Floor by Analyzing the Information Flow Coming from Levels of Decision on the Shop Floor of Developing Countries Using Artificial Neural Network: Cameroon, Case Study," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 255-270, June.
    5. Jarosław Brodny & Magdalena Tutak, 2019. "Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition Systems: A Case Study," Energies, MDPI, vol. 12(13), pages 1-15, June.
    6. Luis Miguel Calvo & Rosario Domingo, 2017. "CO 2 Emissions Reduction and Energy Efficiency Improvements in Paper Making Drying Process Control by Sensors," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    7. Zander, Bennet & Lange, Kerstin & Haasis, Hans-Dietrich, 2021. "Designing the data supply chain of a smart construction factory," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 41-62, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    8. Saud Altaf & Shafiq Ahmad & Mazen Zaindin & Shamsul Huda & Sofia Iqbal & Muhammad Waseem Soomro, 2022. "Multiple Industrial Induction Motors Fault Diagnosis Model within Powerline System Based on Wireless Sensor Network," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    9. Giancarlo Nota & Francesco David Nota & Domenico Peluso & Alonso Toro Lazo, 2020. "Energy Efficiency in Industry 4.0: The Case of Batch Production Processes," Sustainability, MDPI, vol. 12(16), pages 1-28, August.
    10. Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
    11. Dayo-Olupona, Oluwatobi & Genc, Bekir & Celik, Turgay & Bada, Samson, 2023. "Adoptable approaches to predictive maintenance in mining industry: An overview," Resources Policy, Elsevier, vol. 86(PA).
    12. Orlando Durán & Andrea Capaldo & Paulo Andrés Duran Acevedo, 2018. "Sustainable Overall Throughputability Effectiveness (S.O.T.E.) as a Metric for Production Systems," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    13. Ioannis Mallidis & Volha Yakavenka & Anastasios Konstantinidis & Nikolaos Sariannidis, 2021. "A Goal Programming-Based Methodology for Machine Learning Model Selection Decisions: A Predictive Maintenance Application," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
    14. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    15. Chia-Nan Wang & Ying-Fang Huang & Thi-Nham Le & Thanh-Tuan Ta, 2016. "An Innovative Approach to Enhancing the Sustainable Development of Japanese Automobile Suppliers," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    16. Zeki Murat Çınar & Qasim Zeeshan & Orhan Korhan, 2021. "A Framework for Industry 4.0 Readiness and Maturity of Smart Manufacturing Enterprises: A Case Study," Sustainability, MDPI, vol. 13(12), pages 1-32, June.
    17. Silvana Dalmutt Kruger & Antonio Zanin & Orlando Durán & Paulo Afonso, 2022. "Performance Measurement Model for Sustainability Assessment of the Swine Supply Chain," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    18. Francesco Polese & Carmen Gallucci & Luca Carrubbo & Rosalia Santulli, 2021. "Predictive Maintenance as a Driver for Corporate Sustainability: Evidence from a Public-Private Co-Financed R&D Project," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    19. Bożena Zwolińska & Jakub Wiercioch, 2022. "Selection of Maintenance Strategies for Machines in a Series-Parallel System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    20. Moamin A. Mahmoud & Naziffa Raha Md Nasir & Mathuri Gurunathan & Preveena Raj & Salama A. Mostafa, 2021. "The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review," Energies, MDPI, vol. 14(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1680-:d:493366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.