IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1314-d487845.html
   My bibliography  Save this article

Experimental and Techno-Economic Study on the Use of Microalgae for Paper Industry Effluents Remediation

Author

Listed:
  • Maria I. Silva

    (LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Ana L. Gonçalves

    (LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Vítor J. P. Vilar

    (Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • José C. M. Pires

    (LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

Abstract

Humanity is facing some major global threats, namely lack of environmental sustainability, the energy crisis associated with the unsustainable reliance on fossil fuels, and water scarcity, which will be exacerbated with the rapid growth of urban areas. Researchers have drawn their attention to microalgae, photosynthetic microorganisms known for their environmental applications, such as wastewater remediation and lipids accumulation, to produce third-generation biofuels to solve some of these major issues. Considering this dual role, this study evaluated the potential of the microalga Chlorella vulgaris on nutrient removal from a paper industry effluent and bioenergy production. Firstly, experiments were performed to assess the potential of this microalga to: (i) successfully grow in different concentrations of a paper industry effluent (20% to 100%); and (ii) treat the industrial effluent, reducing phosphorus concentrations to values below the accepted legal limits. Then, a techno-economic assessment was performed to study the viability of a C. vulgaris biorefinery targeting the remediation of a paper industry effluent and bioenergy production. The results have shown that C. vulgaris was able to successfully grow and treat the paper industry effluent. Under these conditions, average biomass productivities determined for this microalga ranged between 15.5 ± 0.5 and 26 ± 1 mg dry weight (DW) L −1 d −1 , with maximum biomass concentrations reaching values between 337 ± 9 and 495 ± 25 mg DW L −1 d −1 . Moreover, final phosphorus concentrations ranged between 0.12 ± 0.01 and 0.5 ± 0.3 mg P L −1 , values below the legal limits imposed by the Portuguese Environment Agency on the paper industry. Regarding the proposal of a microalgal biorefinery for the bioremediation of paper industry effluents with bioenergy production, the techno-economic study demonstrated that six of the seven studied scenarios resulted in an economically-viable infrastructure. The highest net present value (15.4 million euros) and lowest discounted payback period (13 years) were determined for Scenario 3, which assumed a photosynthetic efficiency of 3%, a lipids extraction efficiency of 75%, and an anaerobic digestion efficiency of 45%. Therefore, it was possible to conclude that besides being economically viable, the proposed biorefinery presents several environmental benefits: (i) the remediation of an industrial effluent; (ii) CO 2 uptake for microalgal growth, which contributes to a reduction in greenhouse gases emissions; (iii) production of clean and renewable energy; (iv) soil regeneration; and (v) promotion of a circular economy.

Suggested Citation

  • Maria I. Silva & Ana L. Gonçalves & Vítor J. P. Vilar & José C. M. Pires, 2021. "Experimental and Techno-Economic Study on the Use of Microalgae for Paper Industry Effluents Remediation," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1314-:d:487845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1314/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1314/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    2. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    3. Declercq, Bruno & Delarue, Erik & D'haeseleer, William, 2011. "Impact of the economic recession on the European power sector's CO2 emissions," Energy Policy, Elsevier, vol. 39(3), pages 1677-1686, March.
    4. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    5. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    6. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    7. Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
    8. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    9. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.
    10. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    11. Venu, Harish & Subramani, Lingesan & Raju, V. Dhana, 2019. "Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives," Renewable Energy, Elsevier, vol. 140(C), pages 245-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiu-Mei Kuo & Yu-Ling Sun & Cheng-Han Lin & Chao-Hsu Lin & Hsi-Tien Wu & Chih-Sheng Lin, 2021. "Cultivation and Biorefinery of Microalgae ( Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review," Sustainability, MDPI, vol. 13(23), pages 1-30, December.
    2. Sze Shin Low & Kien Xiang Bong & Muhammad Mubashir & Chin Kui Cheng & Man Kee Lam & Jun Wei Lim & Yeek Chia Ho & Keat Teong Lee & Heli Siti Halimatul Munawaroh & Pau Loke Show, 2021. "Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    3. Eva M. Salgado & Ana L. Gonçalves & Francisco Sánchez-Soberón & Nuno Ratola & José C. M. Pires, 2022. "Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes," IJERPH, MDPI, vol. 19(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    2. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    4. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    5. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    6. Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.
    7. Tandon, Puja & Jin, Qiang, 2017. "Microalgae culture enhancement through key microbial approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1089-1099.
    8. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    9. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    11. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    12. Preeti Pal & Kit Wayne Chew & Hong-Wei Yen & Jun Wei Lim & Man Kee Lam & Pau Loke Show, 2019. "Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    13. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    14. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    16. Wang, Meng & Cheng, He & Chen, Shibao & Wen, Shumei & Wu, Xia & Zhang, Dongmei & Yuan, Qipeng & Cong, Wei, 2018. "Microalgal cell disruption via extrusion for the production of intracellular valuables," Energy, Elsevier, vol. 142(C), pages 339-345.
    17. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    18. Soratana, Kullapa & Khanna, Vikas & Landis, Amy E., 2013. "Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels," Applied Energy, Elsevier, vol. 112(C), pages 194-204.
    19. Zhang, Yi & Kong, Xiaoying & Wang, Zhongming & Sun, Yongming & Zhu, Shunni & Li, Lianhua & Lv, Pengmei, 2018. "Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp," Renewable Energy, Elsevier, vol. 125(C), pages 1049-1057.
    20. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1314-:d:487845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.