IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p723-d479701.html
   My bibliography  Save this article

Modeling Building Stock Development

Author

Listed:
  • Antti Kurvinen

    (Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland)

  • Arto Saari

    (Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland)

  • Juhani Heljo

    (Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland)

  • Eero Nippala

    (School of Built Environment and Bioeconomy, Tampere University of Applied Sciences, Kuntokatu 3, FI-33520 Tampere, Finland)

Abstract

It is widely agreed that dynamics of building stocks are relatively poorly known even if it is recognized to be an important research topic. Better understanding of building stock dynamics and future development is crucial, e.g., for sustainable management of the built environment as various analyses require long-term projections of building stock development. Recognizing the uncertainty in relation to long-term modeling, we propose a transparent calculation-based QuantiSTOCK model for modeling building stock development. Our approach not only provides a tangible tool for understanding development when selected assumptions are valid but also, most importantly, allows for studying the sensitivity of results to alternative developments of the key variables. Therefore, this relatively simple modeling approach provides fruitful grounds for understanding the impact of different key variables, which is needed to facilitate meaningful debate on different housing, land use, and environment-related policies. The QuantiSTOCK model may be extended in numerous ways and lays the groundwork for modeling the future developments of building stocks. The presented model may be used in a wide range of analyses ranging from assessing housing demand at the regional level to providing input for defining sustainable pathways towards climate targets. Due to the availability of high-quality data, the Finnish building stock provided a great test arena for the model development.

Suggested Citation

  • Antti Kurvinen & Arto Saari & Juhani Heljo & Eero Nippala, 2021. "Modeling Building Stock Development," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:723-:d:479701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goh Bee-Hua, 1999. "An evaluation of the accuracy of the multiple regression approach in forecasting sectoral construction demand in Singapore," Construction Management and Economics, Taylor & Francis Journals, vol. 17(2), pages 231-241.
    2. Heng Jiang & Chunlu Liu, 2014. "A panel vector error correction approach to forecasting demand in regional construction markets," Construction Management and Economics, Taylor & Francis Journals, vol. 32(12), pages 1205-1221, December.
    3. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    4. Ryan Fan & S. Thomas Ng & James Wong, 2010. "Reliability of the Box-Jenkins model for forecasting construction demand covering times of economic austerity," Construction Management and Economics, Taylor & Francis Journals, vol. 28(3), pages 241-254.
    5. Goh Bee-Hua, 2000. "Evaluating the performance of combining neural networks and genetic algorithms to forecast construction demand: the case of the Singapore residential sector," Construction Management and Economics, Taylor & Francis Journals, vol. 18(2), pages 209-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunkuk Kim, 2021. "Technology and Management for Sustainable Buildings and Infrastructures," Sustainability, MDPI, vol. 13(16), pages 1-3, August.
    2. Mario Kolkwitz & Elina Luotonen & Satu Huuhka, 2023. "How changes in urban morphology translate into urban metabolisms of building stocks: A framework for spatiotemporal material flow analysis and a case study," Environment and Planning B, , vol. 50(6), pages 1559-1576, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    2. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    3. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    4. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    5. John Curtis & Brian Stanley, 2016. "Analysing Residential Energy Demand: An Error Correction Demand System Approach for Ireland," The Economic and Social Review, Economic and Social Studies, vol. 47(2), pages 185-211.
    6. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    7. Wei Yu & Baizhan Li & Yarong Lei & Meng Liu, 2011. "Analysis of a Residential Building Energy Consumption Demand Model," Energies, MDPI, vol. 4(3), pages 1-13, March.
    8. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    9. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    10. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    11. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    12. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    13. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    15. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    16. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    17. Muratori, Matteo & Roberts, Matthew C. & Sioshansi, Ramteen & Marano, Vincenzo & Rizzoni, Giorgio, 2013. "A highly resolved modeling technique to simulate residential power demand," Applied Energy, Elsevier, vol. 107(C), pages 465-473.
    18. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    19. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    20. Dujuan Yang & Harry Timmermans & Aloys Borgers, 2016. "The prevalence of context-dependent adjustment of activity-travel patterns in energy conservation strategies: results from a mixture-amount stated adaptation experiment," Transportation, Springer, vol. 43(1), pages 79-100, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:723-:d:479701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.