IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p505-d476175.html
   My bibliography  Save this article

An Advanced Control Technique for Power Quality Improvement of Grid-Tied Multilevel Inverter

Author

Listed:
  • Sumaya Jahan

    (Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Shuvra Prokash Biswas

    (Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Md. Kamal Hosain

    (Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Md. Rabiul Islam

    (School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia)

  • Safa Haq

    (Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

  • Abbas Z. Kouzani

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

  • M A Parvez Mahmud

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

Abstract

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.

Suggested Citation

  • Sumaya Jahan & Shuvra Prokash Biswas & Md. Kamal Hosain & Md. Rabiul Islam & Safa Haq & Abbas Z. Kouzani & M A Parvez Mahmud, 2021. "An Advanced Control Technique for Power Quality Improvement of Grid-Tied Multilevel Inverter," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:505-:d:476175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/505/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lakshmana Perumal Pattathurani & Subhransu S. Dash & Rajat K. Dwibedi & Mani Devesh Raj & Raju Kannadasan & Max F. Savio & Mohammed H. Alsharif & James Hyungkwan Kim, 2022. "Harmonics Minimisation in Non-Linear Grid System Using an Intelligent Hysteresis Current Controller Operated from a Solar Powered ZETA Converter," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    2. Sivakavi Naga Venkata Bramareswara Rao & Yellapragada Venkata Pavan Kumar & Darsy John Pradeep & Challa Pradeep Reddy & Aymen Flah & Habib Kraiem & Jawad F. Al-Asad, 2022. "Power Quality Improvement in Renewable-Energy-Based Microgrid Clusters Using Fuzzy Space Vector PWM Controlled Inverter," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    3. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:505-:d:476175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.