IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13918-d704021.html
   My bibliography  Save this article

A Novel CNC Milling Energy Consumption Prediction Method Based on Program Parsing and Parallel Neural Network

Author

Listed:
  • Jianhua Cao

    (Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
    Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Xuhui Xia

    (Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
    Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Lei Wang

    (Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
    Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Zelin Zhang

    (Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China
    Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Xiang Liu

    (Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China
    Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)

Abstract

Accurate and rapid prediction of the energy consumption of CNC machining is an effective means to realize the lean management of CNC machine tools energy consumption as well as to achieve the sustainable development of the manufacturing industry. Aiming at the drawbacks of existing CNC milling energy consumption prediction methods in terms of efficiency and precision, a novel milling energy consumption prediction method based on program parsing and parallel neural network is proposed. Firstly, the relationship between CNC program and energy consumption of CNC machine tool is analyzed. Based on the structural characteristics of the CNC program, an automatic parsing algorithm for the CNC program is proposed. Moreover, based on the improved parallel neural network, the mapping relationship between the energy consumption parameters of each CNC instruction and the milling energy consumption is constructed. Finally, the proposed method is compared with the literature to verify the superiority of the proposed method in terms of prediction efficiency and accuracy, and the practicability of the method is verified through the case study. The proposed method lays the foundation for efficient and low-consumption process planning and energy efficiency improvement of machine tools and is conducive to the sustainable development of the environment.

Suggested Citation

  • Jianhua Cao & Xuhui Xia & Lei Wang & Zelin Zhang & Xiang Liu, 2021. "A Novel CNC Milling Energy Consumption Prediction Method Based on Program Parsing and Parallel Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13918-:d:704021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13918/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Yan & Wu, Pengcheng & Li, Yufeng & Wang, Yulin & Tao, Fei & Wang, Yan, 2020. "A generic energy prediction model of machine tools using deep learning algorithms," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    2. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    3. Oh, Jiyoung & Min, Daiki, 2024. "Prediction of energy consumption for manufacturing small and medium-sized enterprises (SMEs) considering industry characteristics," Energy, Elsevier, vol. 300(C).
    4. Mukun Yuan & Jian Liu & Zheyuan Chen & Qingda Guo & Mingzhe Yuan & Jian Li & Guangping Yu, 2024. "Predicting Energy Consumption for Hybrid Energy Systems toward Sustainable Manufacturing: A Physics-Informed Approach Using Pi-MMoE," Sustainability, MDPI, vol. 16(17), pages 1-27, August.
    5. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    6. Li, Lei & Huang, Haihong & Zou, Xiang & Zhao, Fu & Li, Guishan & Liu, Zhifeng, 2021. "An energy-efficient service-oriented energy supplying system and control for multi-machine in the production line," Applied Energy, Elsevier, vol. 286(C).
    7. Ilgin Gokasar & Alperen Timurogullari & Sarp Semih Ozkan & Muhammet Deveci, 2024. "IDILIM: incident detection included linear management using connected autonomous vehicles," Annals of Operations Research, Springer, vol. 339(1), pages 889-908, August.
    8. Meihang Zhang & Hua Zhang & Wei Yan & Zhigang Jiang & Shuo Zhu, 2023. "An Integrated Deep-Learning-Based Approach for Energy Consumption Prediction of Machining Systems," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    9. Hongyi Wu & Xuanyi Wang & Xiaolei Deng & Hongyao Shen & Xinhua Yao, 2024. "Review on Design Research in CNC Machine Tools Based on Energy Consumption," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    10. Marta Daroń & Monika Górska, 2023. "Relationships between Selected Quality Tools and Energy Efficiency in Production Processes," Energies, MDPI, vol. 16(13), pages 1-20, June.
    11. Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    12. Tan, Daniel & Suvarna, Manu & Shee Tan, Yee & Li, Jie & Wang, Xiaonan, 2021. "A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing," Applied Energy, Elsevier, vol. 291(C).
    13. do Carmo, Pedro R.X. & do Monte, João Victor L. & Filho, Assis T. de Oliveira & Freitas, Eduardo & Tigre, Matheus F.F.S.L. & Sadok, Djamel & Kelner, Judith, 2023. "A data-driven model for the optimization of energy consumption of an industrial production boiler in a fiber plant," Energy, Elsevier, vol. 284(C).
    14. Li, Hongcheng & Yang, Dan & Cao, Huajun & Ge, Weiwei & Chen, Erheng & Wen, Xuanhao & Li, Chongbo, 2022. "Data-driven hybrid petri-net based energy consumption behaviour modelling for digital twin of energy-efficient manufacturing system," Energy, Elsevier, vol. 239(PC).
    15. Wang, Liping & Wei, Pengxuan & Li, Weitao & Du, Li, 2024. "Modelling and optimization method for energy saving of computer numerical control machine tools under operating condition," Energy, Elsevier, vol. 306(C).
    16. Abdulgani Kahraman & Mehmed Kantardzic & Muhammet Mustafa Kahraman & Muhammed Kotan, 2021. "A Data-Driven Multi-Regime Approach for Predicting Energy Consumption," Energies, MDPI, vol. 14(20), pages 1-17, October.
    17. Alexander I. Balitskii & Andriy M. Syrotyuk & Maria R. Havrilyuk & Valentina O. Balitska & Valerii O. Kolesnikov & Ljubomyr M. Ivaskevych, 2023. "Hydrogen Cooling of Turbo Aggregates and the Problem of Rotor Shafts Materials Degradation Evaluation," Energies, MDPI, vol. 16(23), pages 1-26, November.
    18. Chou, Jui-Sheng & Truong, Dinh-Nhat & Kuo, Ching-Chiun, 2021. "Imaging time-series with features to enable visual recognition of regional energy consumption by bio-inspired optimization of deep learning," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13918-:d:704021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.