IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13099-d688570.html
   My bibliography  Save this article

Quality of the Wind Wave Forecast in the Black Sea Including Storm Wave Analysis

Author

Listed:
  • Stanislav Myslenkov

    (Department of Oceanology, Lomonosov Moscow State University, 119991 Moscow, Russia
    Shirshov Institute of Oceanology RAS, 117997 Moscow, Russia
    Hydrometeorological Research Centre of the Russian Federation, 123242 Moscow, Russia)

  • Alexander Zelenko

    (Hydrometeorological Research Centre of the Russian Federation, 123242 Moscow, Russia)

  • Yuriy Resnyanskii

    (Hydrometeorological Research Centre of the Russian Federation, 123242 Moscow, Russia)

  • Victor Arkhipkin

    (Department of Oceanology, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Ksenia Silvestrova

    (Shirshov Institute of Oceanology RAS, 117997 Moscow, Russia)

Abstract

This paper presents the results of wind wave forecasts for the Black Sea. Three different versions utilized were utilized: the WAVEWATCH III model with GFS 0.25 forcing on a regular grid, the WAVEWATCH III model with COSMO-RU07 forcing on a regular grid, and the SWAN model with COSMO-RU07 forcing on an unstructured grid. AltiKa satellite altimeter data were used to assess the quality of wind and wave forecasts for the period from 1 April to 31 December 2017. Wave height and wind speed forecast data were obtained with a lead time of up to 72 h. The presented models provide an adequate forecast in terms of modern wave modeling (a correlation coefficient of 0.8–0.9 and an RMSE of 0.25–0.3 m) when all statistics were analyzed. A clear improvement in the wave forecast quality with the high-resolution wind forecast COSMO-RU07 was not registered. The bias error did not exceed 0.5 m in an SWH range from 0 to 3 m. However, the bias sharply increased to −2 or −3 m for an SWH range of 3–4 m. Wave forecast quality assessments were conducted for several storm cases.

Suggested Citation

  • Stanislav Myslenkov & Alexander Zelenko & Yuriy Resnyanskii & Victor Arkhipkin & Ksenia Silvestrova, 2021. "Quality of the Wind Wave Forecast in the Black Sea Including Storm Wave Analysis," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13099-:d:688570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florin Onea & Liliana Rusu, 2017. "A Long-Term Assessment of the Black Sea Wave Climate," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    2. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victoria Yildirir & Eugen Rusu & Florin Onea, 2022. "Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources," Sustainability, MDPI, vol. 14(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).
    3. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    4. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
    5. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    6. Pablo Ruiz-Minguela & Jesus M. Blanco & Vincenzo Nava & Henry Jeffrey, 2022. "Technology-Agnostic Assessment of Wave Energy System Capabilities," Energies, MDPI, vol. 15(7), pages 1-30, April.
    7. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    8. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    9. Adem Akpınar & Halid Jafali & Eugen Rusu, 2019. "Temporal Variation of the Wave Energy Flux in Hotspot Areas of the Black Sea," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    10. Li, Demin & Sharma, Sanjay & Borthwick, Alistair G.L. & Huang, Heao & Dong, Xiaochen & Li, Yanni & Shi, Hongda, 2023. "Experimental study of a floating two-body wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    11. Peter Nojarov, 2021. "Impact of climate change on atmospheric circulation, wind characteristics and wave in the western part of the Black Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1073-1095, October.
    12. Yang, Can & Xu, Tingting & Wan, Chang & Liu, Hengxu & Su, Zuohang & Zhao, Lujun & Chen, Hailong & Johanning, Lars, 2023. "Numerical investigation of a dual cylindrical OWC hybrid system incorporated into a fixed caisson breakwater," Energy, Elsevier, vol. 263(PE).
    13. Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
    14. Changlei Wang & Zirong Luo & Zhongyue Lu & Jianzhong Shang & Mangkuan Wang & Yiming Zhu, 2022. "Design and CFD Analysis of the Energy Efficiency of a Point Wave Energy Converter Using Passive Morphing Blades," Energies, MDPI, vol. 16(1), pages 1-14, December.
    15. Meng Qi & Xin Dai & Bei Zhang & Junjie Li & Bangfan Liu, 2023. "The Evolution and Future Prospects of China’s Wave Energy Policy from the Perspective of Renewable Energy: Facing Problems, Governance Optimization and Effectiveness Logic," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    16. Xu, Conghao & He, Yuanyuan & Yao, Yu & Zuo, Jun, 2023. "Experimental and numerical study of a circular OWC with a U-shaped duct for wave energy conversion in long waves: Hydrodynamic characteristics and viscous energy loss," Renewable Energy, Elsevier, vol. 215(C).
    17. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    18. Liu, Zhen & Zhang, Guoliang, 2024. "Overtopping performance of a multi-level CROWN wave energy convertor: A numerical study," Energy, Elsevier, vol. 294(C).
    19. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    20. Arguilé-Pérez, B. & Ribeiro, A.S. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2023. "Suitability of wave energy converters in northwestern Spain under the near future winter wave climate," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13099-:d:688570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.