IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12864-d684146.html
   My bibliography  Save this article

Prefabricated Engineered Timber Schools in the United Kingdom: Challenges and Opportunities

Author

Listed:
  • Antiopi Koronaki

    (Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK)

  • Aurimas Bukauskas

    (Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK)

  • Aftab Jalia

    (Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK)

  • Darshil U. Shah

    (Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK)

  • Michael H. Ramage

    (Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK)

Abstract

Due to changing demographics, the UK faces a significant shortage of school places. The UK government aims to build large numbers of new schools to meet this demand. However, legally binding carbon emissions mitigation commitments might limit the ability of the government to adequately meet this demand on-time, on-budget, and within sustainability targets. This paper assesses the opportunity for prefabricated engineered timber construction methods to help meet the demand for new primary and secondary school buildings in the UK within these constraints. Building on a study of past government-led school building programmes and the state-of-the-art developments in engineered timber construction, this paper outlines the benefits that an engineered timber school building programme could have on a sustainability and procurement level. A strategy is then proposed for the wider adoption of engineered timber for the construction of school buildings in the UK, including detailed guidelines for designers and policymakers. The study concludes with recommendations for the adaptation of this strategy in different countries, depending on context-specific requirements, therefore promoting a generalised adoption of sustainable and efficient construction processes.

Suggested Citation

  • Antiopi Koronaki & Aurimas Bukauskas & Aftab Jalia & Darshil U. Shah & Michael H. Ramage, 2021. "Prefabricated Engineered Timber Schools in the United Kingdom: Challenges and Opportunities," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12864-:d:684146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helena Johnsson & John Henrik Meiling, 2009. "Defects in offsite construction: timber module prefabrication," Construction Management and Economics, Taylor & Francis Journals, vol. 27(7), pages 667-681.
    2. Kraxner, Florian & Schepaschenko, Dmitry & Fuss, Sabine & Lunnan, Anders & Kindermann, Georg & Aoki, Kentaro & Dürauer, Martina & Shvidenko, Anatoly & See, Linda, 2017. "Mapping certified forests for sustainable management - A global tool for information improvement through participatory and collaborative mapping," Forest Policy and Economics, Elsevier, vol. 83(C), pages 10-18.
    3. Ramage, Michael H. & Burridge, Henry & Busse-Wicher, Marta & Fereday, George & Reynolds, Thomas & Shah, Darshil U. & Wu, Guanglu & Yu, Li & Fleming, Patrick & Densley-Tingley, Danielle & Allwood, Juli, 2017. "The wood from the trees: The use of timber in construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 333-359.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    2. Luo, Li & O'Hehir, Jim & Regan, Courtney M. & Meng, Li & Connor, Jeffery D. & Chow, Christopher W.K., 2021. "An integrated strategic and tactical optimization model for forest supply chain planning," Forest Policy and Economics, Elsevier, vol. 131(C).
    3. Henry, Laura A. & Tysiachniouk, Maria, 2018. "The uneven response to global environmental governance: Russia's contentious politics of forest certification," Forest Policy and Economics, Elsevier, vol. 90(C), pages 97-105.
    4. Nazari, Meysam & Jebrane, Mohamed & Terziev, Nasko, 2023. "New hybrid bio-composite based on epoxidized linseed oil and wood particles hosting ethyl palmitate for energy storage in buildings," Energy, Elsevier, vol. 278(C).
    5. Morgan, Edward A. & Buckwell, Andrew & Guidi, Caterina & Garcia, Beatriz & Rimmer, Lawrence & Cadman, Tim & Mackey, Brendan, 2022. "Capturing multiple forest ecosystem services for just benefit sharing: The Basket of Benefits Approach," Ecosystem Services, Elsevier, vol. 55(C).
    6. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Meng-Ting Tsai & Anthony Sugiharto Wonodihardjo, 2018. "Achieving Sustainability of Traditional Wooden Houses in Indonesia by Utilization of Cost-Efficient Waste-Wood Composite," Sustainability, MDPI, vol. 10(6), pages 1-21, May.
    8. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    9. Hosang Hyun & Hyung-Geun Kim & Jin-Sung Kim, 2022. "Integrated Off-Site Construction Design Process including DfMA Considerations," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    10. Vujcic, Maja & Tomicevic-Dubljevic, Jelena, 2018. "Urban forest benefits to the younger population: The case study of the city of Belgrade, Serbia," Forest Policy and Economics, Elsevier, vol. 96(C), pages 54-62.
    11. Anastasiades, K. & Blom, J. & Buyle, M. & Audenaert, A., 2020. "Translating the circular economy to bridge construction: Lessons learnt from a critical literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Jim Hart & Francesco Pomponi, 2020. "More Timber in Construction: Unanswered Questions and Future Challenges," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    13. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Präger, Fabian & Paczkowski, Sebastian & Sailer, Gregor & Derkyi, Nana Sarfo Agyemang & Pelz, Stefan, 2019. "Biomass sources for a sustainable energy supply in Ghana – A case study for Sunyani," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 413-424.
    15. Lauri, Pekka & Forsell, Nicklas & Di Fulvio, Fulvio & Snäll, Tord & Havlik, Petr, 2021. "Material substitution between coniferous, non-coniferous and recycled biomass – Impacts on forest industry raw material use and regional competitiveness," Forest Policy and Economics, Elsevier, vol. 132(C).
    16. Ewa Leszczyszyn & Henrik Heräjärvi & Erkki Verkasalo & Javier Garcia-Jaca & Gerardo Araya-Letelier & Jean-Denis Lanvin & Gabriela Bidzińska & Dobrochna Augustyniak-Wysocka & Uwe Kies & Alex Calvillo &, 2022. "The Future of Wood Construction: Opportunities and Barriers Based on Surveys in Europe and Chile," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    17. Abhijeet Mishra & Florian Humpenöder & Galina Churkina & Christopher P. O. Reyer & Felicitas Beier & Benjamin Leon Bodirsky & Hans Joachim Schellnhuber & Hermann Lotze-Campen & Alexander Popp, 2022. "Land use change and carbon emissions of a transformation to timber cities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    19. Brusselaers, Jan & Buysse, Jeroen, 2021. "Legality requirements for wood import in the EU: Who wins, who loses?," Forest Policy and Economics, Elsevier, vol. 123(C).
    20. Heesun Lim & Chang-Deuk Eom & Byeong-il Ahn, 2021. "Estimation of the Values of Wooden Materials in Urban Regeneration: The Case of Seoullo in Korea," Sustainability, MDPI, vol. 13(17), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12864-:d:684146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.