IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12576-d679051.html
   My bibliography  Save this article

SPI-Based Hybrid Hidden Markov–GA, ARIMA–GA, and ARIMA–GA–ANN Models for Meteorological Drought Forecasting

Author

Listed:
  • Mohammed Alquraish

    (Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia)

  • Khaled Ali. Abuhasel

    (Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia)

  • Abdulrahman S. Alqahtani

    (Department of Computer Science, College of Computing and Information Technology, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia)

  • Mosaad Khadr

    (Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia)

Abstract

Drought is a severe environmental disaster that results in significant social and economic damage. As such, efficient mitigation plans must rely on precise modeling and forecasting of the phenomenon. This study was designed to enhance drought forecasting through developing and evaluating the applicability of three hybrid models—the hidden Markov model–genetic algorithm (HMM–GA), the auto-regressive integrated moving average–genetic algorithm (ARIMA–GA), and a novel auto-regressive integrated moving average–genetic algorithm–ANN (ARIMA–GA–ANN)—to forecast the standard precipitation index (SPI) in the Bisha Valley, Saudi Arabia. The accuracy of the models was investigated and compared with that of classical HMM and ARIMA based on a performance evaluation and visual inspection. Furthermore, the multi-class Receiver Operating Characteristic-based Area under the Curve (ROC–AUC) was applied to evaluate the ability of the hybrid model to forecast drought events. We used data from 1968 to 2008 to train the models and data from 2009 to 2019 for validation. The performance evaluation results confirmed that the hybrid models provided superior results in forecasting the SPI one month in advance. Furthermore, the results demonstrated that the GA-induced improvement in the HMM forecasts was matched by an approximate 16.40% and 23.46% decrease in the RMSE in the training and testing results, respectively, compared to the classical HMM model. Consequently, the RMSE values of the ARIMA–GA model were reduced by an average of 10.06% and 9.36% for the training and testing processes, respectively. Finally, the ARIMA–GA–ANN, which combined the strengths of the linear stochastic model ARIMA and a non-linear ANN, achieved a greater reduction values in RMSE by an average of 32.82% and 27.47% in comparison with ARIMA in the training and testing phases, respectively. The ROC–AUC results confirmed the capability of the developed models to distinguish between events and non-events with reasonable accuracy, implying the appropriateness of these models as a tool for drought mitigation and warning systems.

Suggested Citation

  • Mohammed Alquraish & Khaled Ali. Abuhasel & Abdulrahman S. Alqahtani & Mosaad Khadr, 2021. "SPI-Based Hybrid Hidden Markov–GA, ARIMA–GA, and ARIMA–GA–ANN Models for Meteorological Drought Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12576-:d:679051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Cancelliere & G. Mauro & B. Bonaccorso & G. Rossi, 2007. "Drought forecasting using the Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 801-819, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyunwoo Kang & Venkataramana Sridhar, 2018. "Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic Conditions," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    2. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    3. Xiaojing Liu & Jiquan Zhang & Donglai Ma & Yulong Bao & Zhijun Tong & Xingpeng Liu, 2013. "Dynamic risk assessment of drought disaster for maize based on integrating multi-sources data in the region of the northwest of Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1393-1409, February.
    4. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    5. Gholamreza Roshan & AbdolAzim Ghanghermeh & Touraj Nasrabadi & Jafar Meimandi, 2013. "Effect of Global Warming on Intensity and Frequency Curves of Precipitation, Case Study of Northwestern Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1563-1579, March.
    6. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    7. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    8. Peng Shi & Miao Wu & Simin Qu & Peng Jiang & Xueyuan Qiao & Xi Chen & Mi Zhou & Zhicai Zhang, 2015. "Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3941-3955, September.
    9. Farnaz Pourzand & Ilan Noy & Yigit Saglam, 2019. "Droughts and farms' financial performance in New Zealand: a micro farm-level study," CESifo Working Paper Series 7633, CESifo.
    10. Hao Guo & Anming Bao & Tie Liu & Felix Ndayisaba & Daming He & Alishir Kurban & Philippe De Maeyer, 2017. "Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product," Sustainability, MDPI, vol. 9(6), pages 1-21, May.
    11. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    12. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Quoc Bao Pham & Tao-Chang Yang & Chen-Min Kuo & Hung-Wei Tseng & Pao-Shan Yu, 2021. "Coupling Singular Spectrum Analysis with Least Square Support Vector Machine to Improve Accuracy of SPI Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 847-868, February.
    14. Dimitrios Myronidis & Dimitrios Stathis & Konstantinos Ioannou & Dimitrios Fotakis, 2012. "An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4587-4605, December.
    15. Salim Djerbouai & Doudja Souag-Gamane, 2016. "Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models: Case of the Algerois Basin in North Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2445-2464, May.
    16. E. Arnone & Marco Cucchi & Sara Dal Gesso & Marcello Petitta & Sandro Calmanti, 2020. "Droughts Prediction: a Methodology Based on Climate Seasonal Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4313-4328, November.
    17. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    18. Ummul Abdul Rauf & Panlop Zeephongsekul, 2014. "Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4835-4856, October.
    19. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    20. Emanuela Sassu & Riccardo Zucca & Giovanni M. Sechi, 2021. "Calibration Procedure of Regional Flow Duration Curves Evaluating Water Resource Withdrawal from Diversion Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1135-1148, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12576-:d:679051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.