IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11948-d667310.html
   My bibliography  Save this article

Prototyping of a Novel Rammed Earth Technology

Author

Listed:
  • Giada Giuffrida

    (Department of Civil Engineering and Architecture, University of Catania, 95125 Catania, Italy)

  • Rosa Caponetto

    (Department of Civil Engineering and Architecture, University of Catania, 95125 Catania, Italy)

  • Francesco Nocera

    (Department of Civil Engineering and Architecture, University of Catania, 95125 Catania, Italy)

  • Massimo Cuomo

    (Department of Civil Engineering and Architecture, University of Catania, 95125 Catania, Italy)

Abstract

Buildings of the future are called to meet increasingly high-performance requirements and to ensure adequate environmental sustainability of the production and construction chain. This issue has stimulated a keen interest in the use of natural materials in construction. Among these, raw earth has proved to be particularly interesting for its intrinsic availability, sustainability, and recyclability. In Europe, the spread of raw earth building technologies has often been hindered by the lack of specific legislation regulating its use for load-bearing structures, even if in many countries, it can be noticed a widespread and well-established constructive tradition. Some transoceanic research experiences attest that unfired earth can be used, together with different types of reinforcements, to create seismic-resistant buildings. After presenting a review of the main raw earth reinforced technologies, the present study focuses on a novel reinforced and modular rammed earth construction made with natural or recycled materials, developing a technology with low energy consumption and low environmental impact, specifically designed for areas with high seismic risk. In particular, the work presents the results of a prototyping procedure aiming at developing a new seismic-resistant construction system that combines rammed earth with timber reinforcement elements and nylon/polyester ropes. These elements have a dual function: (1) they are fundamental components of the construction process (as they integrate the formwork system), and (2) they act as seismic-resistant devices once the structure is completed. In line with the performance-based approach required by the construction sector, the study aims at defining a controlled and standardised supply chain for rammed earth construction.

Suggested Citation

  • Giada Giuffrida & Rosa Caponetto & Francesco Nocera & Massimo Cuomo, 2021. "Prototyping of a Novel Rammed Earth Technology," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11948-:d:667310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giada Giuffrida & Maurizio Detommaso & Francesco Nocera & Rosa Caponetto, 2021. "Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates," Energies, MDPI, vol. 14(2), pages 1-23, January.
    2. Bly Windstorm & Arno Schmidt, 2013. "A Report of Contemporary Rammed Earth Construction and Research in North America," Sustainability, MDPI, vol. 5(2), pages 1-17, January.
    3. Francesco Nocera & Rosa Caponetto & Giada Giuffrida & Maurizio Detommaso, 2020. "Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Giuffrida Giada & Rosa Caponetto & Francesco Nocera, 2019. "Hygrothermal Properties of Raw Earth Materials: A Literature Review," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Vitale & María del Mar Barbero-Barrera & Santi Maria Cascone, 2021. "Thermal, Physical and Mechanical Performance of Orange Peel Boards: A New Recycled Material for Building Application," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    2. Giada Giuffrida & Maurizio Detommaso & Francesco Nocera & Rosa Caponetto, 2021. "Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates," Energies, MDPI, vol. 14(2), pages 1-23, January.
    3. Monica C. M. Parlato & Simona M. C. Porto & Carmen Galán-Marín & Carlos Alberto Rivera-Gómez & Massimo Cuomo & Francesco Nocera, 2023. "Thermal Performance, Microstructure Analysis and Strength Characterisation of Agro-Waste Reinforced Soil Materials," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    4. Qinglong Gao & Tao Wu & Lei Liu & Yong Yao & Bin Jiang, 2022. "Prediction of Wall and Indoor Hygrothermal Properties of Rammed Earth Folk House in Northwest Sichuan," Energies, MDPI, vol. 15(5), pages 1-16, March.
    5. Alexey Maslakov & Ksenia Sotnikova & Gleb Gribovskii & Dmitry Evlanov, 2022. "Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic," Energies, MDPI, vol. 15(3), pages 1-16, January.
    6. Václav Kočí & Jan Kočí & Jiří Maděra & Jaroslav Žák & Robert Černý, 2020. "Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details," Energies, MDPI, vol. 13(2), pages 1-17, January.
    7. Jerzy Górski & Anna Patrycja Nowak & Marek Kołłątaj, 2021. "Resilience of Raw-Earth Technology in the Climate of Middle Europe Based on Analysis of Experimental Building in Pasłęk in Poland," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    8. Andrea Longhitano & Vincenzo Costanzo & Gianpiero Evola & Francesco Nocera, 2024. "Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems," Energies, MDPI, vol. 17(5), pages 1-17, March.
    9. Andrea Salandin & Alberto Quintana-Gallardo & Vicente Gómez-Lozano & Ignacio Guillén-Guillamón, 2022. "The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    10. Rosa Caponetto & Massimo Cuomo & Maurizio Detommaso & Giada Giuffrida & Antonio Lo Presti & Francesco Nocera, 2023. "Performance Assessment of Giant Reed-Based Building Components," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    11. Michele La Noce & Alessandro Lo Faro & Gaetano Sciuto, 2021. "Clay-Based Products Sustainable Development: Some Applications," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    12. Widera, Barbara, 2021. "Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. María Dolores Mainar-Toledo & Maider Gómez Palmero & Maryori Díaz-Ramírez & Iñaki Mendioroz & David Zambrana-Vasquez, 2023. "A Multi-Criteria Approach to Evaluate Sustainability: A Case Study of the Navarrese Wine Sector," Energies, MDPI, vol. 16(18), pages 1-21, September.
    14. Davide Pivetta & Sergio Rech & Andrea Lazzaretto, 2020. "Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar," Energies, MDPI, vol. 13(23), pages 1-33, November.
    15. Richard M. Yelland, 2013. "History Made for Tomorrow: Hakka Tulou," Sustainability, MDPI, vol. 5(11), pages 1-12, November.
    16. Mu, Jun & Yu, Shenwei & Hao, Shimeng, 2023. "Quantitative evaluation of thermal conductivity of earth materials with different particle size distributions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Genovese, P.V. & Zoure, A.N., 2023. "Architecture trends and challenges in sub-Saharan Africa's construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Francesco Nocera & Rosa Caponetto & Giada Giuffrida & Maurizio Detommaso, 2020. "Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study," Energies, MDPI, vol. 13(12), pages 1-17, June.
    19. Stefania De Medici, 2021. "Italian Architectural Heritage and Photovoltaic Systems. Matching Style with Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    20. Zongqin Wang & Wenbing Wu & Peng Zhang & Zuodong Wang & Ruichen Xi & Minjie Wen, 2022. "Thermal Effect in Nonlinear One-Dimensional Consolidation of Cold Region Soil," Energies, MDPI, vol. 15(15), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11948-:d:667310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.