IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2114-d1044337.html
   My bibliography  Save this article

Performance Assessment of Giant Reed-Based Building Components

Author

Listed:
  • Rosa Caponetto

    (Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy)

  • Massimo Cuomo

    (Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy)

  • Maurizio Detommaso

    (Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy)

  • Giada Giuffrida

    (Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
    CERTES, Université Paris Est-Créteil, 61 Av. du General de Gaulle, 94010 Créteil, France)

  • Antonio Lo Presti

    (L.A.P.I.S. Laboratorio Analisi Petrografiche e Indagini Strumentali, 101/B, Via della Regione, 95037 Catania, Italy)

  • Francesco Nocera

    (Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy)

Abstract

The growing concern for the reduction of energy needs and the environmental impact of the building sector has placed emphasis on the possibilities offered by natural materials. The adoption of agricultural by-products seems to be promising and in line with the circular economy paradigm. Materials such as hemp and straw have been extensively adopted in contemporary construction, but nevertheless, the potential use of giant reed has not been sufficiently investigated despite being a common infesting plant abundantly available all over the planet. This work focuses on the performances assessment of lime/cement–reeds mixtures as base materials to design a new line of building components (bricks, blocks, panels and loose insulation) that can be used both in new bio-based construction and in existing buildings for energy-efficiency retrofit. The main materials used in the experimental campaign are giant reed by-products, lime, cement and local and recycled aggregates. The evaluation of the physical, mechanical and thermal properties of lime–reed and cement–reed composites are presented. The results of thermal conductivities (between 0.245 and 0.191 W/m K) and mechanical properties (compressive strengths between 0.848 and 1.509 MPa, and flexural strengths between 0.483 and 0.829 MPa) allow meeting the requirements for non-bearing and thermal building blocks. The outcomes show how blocks made with the abovementioned lime–reed mixture have good mechanical performance and thermo-physical behavior when compared to conventional building materials such as hollow clay or hemp blocks with the same thickness.

Suggested Citation

  • Rosa Caponetto & Massimo Cuomo & Maurizio Detommaso & Giada Giuffrida & Antonio Lo Presti & Francesco Nocera, 2023. "Performance Assessment of Giant Reed-Based Building Components," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2114-:d:1044337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuffrida Giada & Rosa Caponetto & Francesco Nocera, 2019. "Hygrothermal Properties of Raw Earth Materials: A Literature Review," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    2. Chang-Seon Shon & Temirlan Mukashev & Deuckhang Lee & Dichuan Zhang & Jong R. Kim, 2019. "Can Common Reed Fiber Become an Effective Construction Material? Physical, Mechanical, and Thermal Properties of Mortar Mixture Containing Common Reed Fiber," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim Baibagyssov & Niels Thevs & Sabir Nurtazin & Rainer Waldhardt & Volker Beckmann & Ruslan Salmurzauly, 2020. "Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects," Resources, MDPI, vol. 9(6), pages 1-25, June.
    2. Giada Giuffrida & Rosa Caponetto & Francesco Nocera & Massimo Cuomo, 2021. "Prototyping of a Novel Rammed Earth Technology," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    3. Václav Kočí & Jan Kočí & Jiří Maděra & Jaroslav Žák & Robert Černý, 2020. "Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details," Energies, MDPI, vol. 13(2), pages 1-17, January.
    4. Matteo Vitale & María del Mar Barbero-Barrera & Santi Maria Cascone, 2021. "Thermal, Physical and Mechanical Performance of Orange Peel Boards: A New Recycled Material for Building Application," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Alana Silva & Florindo Gaspar & Aliaksandr Bakatovich, 2023. "Composite Materials of Rice Husk and Reed Fibers for Thermal Insulation Plates Using Sodium Silicate as a Binder," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    6. Michele La Noce & Alessandro Lo Faro & Gaetano Sciuto, 2021. "Clay-Based Products Sustainable Development: Some Applications," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    7. Giada Giuffrida & Maurizio Detommaso & Francesco Nocera & Rosa Caponetto, 2021. "Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates," Energies, MDPI, vol. 14(2), pages 1-23, January.
    8. Mu, Jun & Yu, Shenwei & Hao, Shimeng, 2023. "Quantitative evaluation of thermal conductivity of earth materials with different particle size distributions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Qinglong Gao & Tao Wu & Lei Liu & Yong Yao & Bin Jiang, 2022. "Prediction of Wall and Indoor Hygrothermal Properties of Rammed Earth Folk House in Northwest Sichuan," Energies, MDPI, vol. 15(5), pages 1-16, March.
    10. Francesco Nocera & Rosa Caponetto & Giada Giuffrida & Maurizio Detommaso, 2020. "Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study," Energies, MDPI, vol. 13(12), pages 1-17, June.
    11. Gerardo Araya-Letelier & Pablo Maturana & Miguel Carrasco & Federico Carlos Antico & María Soledad Gómez, 2019. "Mechanical-Damage Behavior of Mortars Reinforced with Recycled Polypropylene Fibers," Sustainability, MDPI, vol. 11(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2114-:d:1044337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.