IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11517-d659198.html
   My bibliography  Save this article

A Study of the Factors Affecting Multimodal Ridesharing with Choice-Based Conjoint Analysis

Author

Listed:
  • Sunghi An

    (Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Irvine, CA 92603, USA)

  • Daisik Nam

    (Graduate School of Logistics, Inha University, Incheon 22212, Korea)

  • R. Jayakrishnan

    (Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Irvine, CA 92603, USA)

  • Soongbong Lee

    (Department of Big Data Platform and Data Economy, The Korea Transport Institute, Sejong 30147, Korea)

  • Michael G. McNally

    (Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Irvine, CA 92603, USA)

Abstract

As public perception about the shared economy evolves, peer-to-peer ridesharing has been gaining increased attention worldwide. Both private and public sector entities have launched mobile app-based ridesharing services, while a range of methodologies and system architectures have been proposed in academia. Whereas traditional ridesharing methods match drivers and riders when their origin and destination are similar, recently proposed algorithms often feature multi-hop and multimodal properties that allow riders to be connected by multiple modes. Such algorithms can reduce travel time and/or travel cost; however, they may also add other travel impedances, such as requiring multiple transfers. Understanding user behavior toward such new ridesharing systems is essential for successful service design. For policymakers and service planners, identifying factors that impact traveler choices can lead to better design and improved services. This research involved a web-based survey to capture traveler preferences using a conjoint analysis framework. A choice-based method was adopted to identify factors for the estimation model and to analyze traveler willingness to pay. Among the proposed factors, the number-of-transfers was shown to be the most important, as was expected. When a multimodal ridesharing system provides less travel time, low travel cost, and sufficient ridesharing incentive, people are more likely to pay for the service.

Suggested Citation

  • Sunghi An & Daisik Nam & R. Jayakrishnan & Soongbong Lee & Michael G. McNally, 2021. "A Study of the Factors Affecting Multimodal Ridesharing with Choice-Based Conjoint Analysis," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11517-:d:659198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    2. Brownstone, David & Golob, Thomas F., 1992. "The effectiveness of ridesharing incentives: Discrete-choice models of commuting in Southern California," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 5-24, March.
    3. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    4. Karniouchina, Ekaterina V. & Moore, William L. & van der Rhee, Bo & Verma, Rohit, 2009. "Issues in the use of ratings-based versus choice-based conjoint analysis in operations management research," European Journal of Operational Research, Elsevier, vol. 197(1), pages 340-348, August.
    5. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    6. Vithala R. Rao, 2014. "Applied Conjoint Analysis," Springer Books, Springer, edition 127, number 978-3-540-87753-0, October.
    7. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    8. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    9. Joonho Ko & Daejin Kim & Daisik Nam & Taekyung Lee, 2017. "Determining locations of charging stations for electric taxis using taxi operation data," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 420-433, May.
    10. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    3. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    4. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    5. Xiaolei Wang & Hai Yang & Daoli Zhu, 2018. "Driver-Rider Cost-Sharing Strategies and Equilibria in a Ridesharing Program," Transportation Science, INFORMS, vol. 52(4), pages 868-881, August.
    6. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
    7. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    8. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    9. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    11. Lei, Chao & Jiang, Zhoutong & Ouyang, Yanfeng, 2020. "Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 60-75.
    12. Yan, Pengyu & Lee, Chung-Yee & Chu, Chengbin & Chen, Cynthia & Luo, Zhiqin, 2021. "Matching and pricing in ride-sharing: Optimality, stability, and financial sustainability," Omega, Elsevier, vol. 102(C).
    13. Stumpe, Miriam & Dieter, Peter & Schryen, Guido & Müller, Oliver & Beverungen, Daniel, 2024. "Designing taxi ridesharing systems with shared pick-up and drop-off locations: Insights from a computational study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    14. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    15. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    16. Qian, Xinwu & Zhang, Wenbo & Ukkusuri, Satish V. & Yang, Chao, 2017. "Optimal assignment and incentive design in the taxi group ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 208-226.
    17. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    18. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    19. Inayatullah Shah & Mohammed El Affendi & Basit Qureshi, 2020. "SRide: An Online System for Multi-Hop Ridesharing," Sustainability, MDPI, vol. 12(22), pages 1-29, November.
    20. Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11517-:d:659198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.