IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v40y2017i4p420-433.html
   My bibliography  Save this article

Determining locations of charging stations for electric taxis using taxi operation data

Author

Listed:
  • Joonho Ko
  • Daejin Kim
  • Daisik Nam
  • Taekyung Lee

Abstract

The adequate provision of charging infrastructure is critical for the effective deployment of electric taxis. This study attempts to locate charging stations for electric taxis reflecting real-world taxi travel patterns identified from taxis equipped with digital tachographs. Data for one week are processed in order to estimate their charge demand. The estimated temporal distribution of charge demand indicates that it varies day-by-day and hour-by-hour. The maximum set covering model is applied for determining the locations of charging stations. The results show that the pre-specified service distance and service coverage rate (defined by the proportion of total demand served) can be critical factors for determining the number and location of charging stations. These factors should be carefully specified by considering the tradeoff between operational efficiency of charging facilities and user convenience.

Suggested Citation

  • Joonho Ko & Daejin Kim & Daisik Nam & Taekyung Lee, 2017. "Determining locations of charging stations for electric taxis using taxi operation data," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 420-433, May.
  • Handle: RePEc:taf:transp:v:40:y:2017:i:4:p:420-433
    DOI: 10.1080/03081060.2017.1300243
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2017.1300243
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2017.1300243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansur Arief & Yan Akhra & Iwan Vanany, 2023. "A Robust and Efficient Optimization Model for Electric Vehicle Charging Stations in Developing Countries under Electricity Uncertainty," Papers 2307.05470, arXiv.org.
    2. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    3. Ömer Kaya & Kadir Diler Alemdar & Tiziana Campisi & Ahmet Tortum & Merve Kayaci Çodur, 2021. "The Development of Decarbonisation Strategies: A Three-Step Methodology for the Suitable Analysis of Current EVCS Locations Applied to Istanbul, Turkey," Energies, MDPI, vol. 14(10), pages 1-21, May.
    4. Sunghi An & Daisik Nam & R. Jayakrishnan & Soongbong Lee & Michael G. McNally, 2021. "A Study of the Factors Affecting Multimodal Ridesharing with Choice-Based Conjoint Analysis," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    5. Kang, Seong-Cheol & Lee, Hoyoung, 2019. "Economic appraisal of implementing electric vehicle taxis in Seoul," Research in Transportation Economics, Elsevier, vol. 73(C), pages 45-52.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:40:y:2017:i:4:p:420-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.