IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11187-d653355.html
   My bibliography  Save this article

Exhausted Grape Marc Derived Biochars: Effect of Pyrolysis Temperature on the Yield and Quality of Biochar for Soil Amendment

Author

Listed:
  • Kawthar Frikha

    (Institut de Science des Materiaux de Mulhouse, Université de Haute-Alsace, F-68057 Mulhouse, France)

  • Lionel Limousy

    (Institut de Science des Materiaux de Mulhouse, Université de Haute-Alsace, F-68057 Mulhouse, France)

  • Muhammad Bilal Arif

    (Institut de Science des Materiaux de Mulhouse, Université de Haute-Alsace, F-68057 Mulhouse, France)

  • Nicolas Thevenin

    (Department of Agronomy, Rittmo Agroenvironment, F-68025 Colmar, France)

  • Lionel Ruidavets

    (Department of Agronomy, Rittmo Agroenvironment, F-68025 Colmar, France)

  • Mohamed Zbair

    (Institut de Science des Materiaux de Mulhouse, Université de Haute-Alsace, F-68057 Mulhouse, France)

  • Simona Bennici

    (Institut de Science des Materiaux de Mulhouse, Université de Haute-Alsace, F-68057 Mulhouse, France)

Abstract

The present study focuses on the valorisation of winery industry wastes through slow pyrolysis of exhausted grape marc (EGM). The optimal pyrolysis parameters were firstly identified by small scale experiments carried out using thermogravimetric analysis. Nine pyrolysis temperatures were tested and their influence on the decomposition of the EGM residue and biochar yield was evaluated. Then, biochar production was conducted in a pilot plant at three chosen temperatures (450, 500 and 550 °C) at which the biochar was shown to be stable. The effects of biochar application to soil with respect to plant (ryegrass) growth was also evaluated. Pyrolysis of EGM at the 450–550 °C temperature range has been shown to generate thermally stable and nutrient-rich biochars, but only the biochar produced at 450 °C showed a marked benefit effect of ryegrass growth.

Suggested Citation

  • Kawthar Frikha & Lionel Limousy & Muhammad Bilal Arif & Nicolas Thevenin & Lionel Ruidavets & Mohamed Zbair & Simona Bennici, 2021. "Exhausted Grape Marc Derived Biochars: Effect of Pyrolysis Temperature on the Yield and Quality of Biochar for Soil Amendment," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11187-:d:653355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibn Ferjani, A. & Jeguirim, M. & Jellali, S. & Limousy, L. & Courson, C. & Akrout, H. & Thevenin, N. & Ruidavets, L. & Muller, A. & Bennici, S., 2019. "The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 425-433.
    2. Marculescu, Cosmin & Ciuta, Simona, 2013. "Wine industry waste thermal processing for derived fuel properties improvement," Renewable Energy, Elsevier, vol. 57(C), pages 645-652.
    3. Gholizadeh, Mortaza & Hu, Xun & Liu, Qing, 2019. "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Beidaghy Dizaji & Thomas Zeng & Volker Lenz & Dirk Enke, 2022. "Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications," Sustainability, MDPI, vol. 14(9), pages 1-5, April.
    2. Mohamed Zbair & Méghane Drané & Lionel Limousy, 2024. "NO 2 Adsorption on Biochar Derived from Wood Shaving Litter: Understanding Surface Chemistry and Adsorption Mechanisms," Clean Technol., MDPI, vol. 6(3), pages 1-21, July.
    3. Xia Li & Hongyu Jia & Lihua Jiang & Zhengwei Mou & Bo Zhang & Zihui Zhang & Yan Chen, 2024. "Biochar Prepared from Steam-Exploded Bitter Melon Vine for the Adsorption of Methylene Blue from Aqueous Solution: Kinetics, Isotherm, Thermodynamics and Mechanism," Sustainability, MDPI, vol. 16(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhimin & Zhang, Yanchao & Dong, Qingchun & Lin, Jian & Lin, Guoxing & Chen, Jincan, 2018. "Maximum power output and parametric choice criteria of a thermophotovoltaic cell driven by automobile exhaust," Renewable Energy, Elsevier, vol. 121(C), pages 28-35.
    2. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    4. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    5. Joaquim Costa & Jorge Martins & Tiago Arantes & Margarida Gonçalves & Luis Durão & Francisco P. Brito, 2021. "Experimental Assessment of the Performance and Emissions of a Spark-Ignition Engine Using Waste-Derived Biofuels as Additives," Energies, MDPI, vol. 14(16), pages 1-19, August.
    6. Md Said, Mohamad Syazarudin & Azni, Atiyyah Ameenah & Wan Ab Karim Ghani, Wan Azlina & Idris, Azni & Ja'afar, Mohamad Fakri Zaky & Mohd Salleh, Mohamad Amran, 2022. "Production of biochar from microwave pyrolysis of empty fruit bunch in an alumina susceptor," Energy, Elsevier, vol. 240(C).
    7. Kraiem, Nesrine & Lajili, Marzouk & Limousy, Lionel & Said, Rachid & Jeguirim, Mejdi, 2016. "Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc," Energy, Elsevier, vol. 107(C), pages 409-418.
    8. Josefa Fernández-Ferreras & Tamara Llano & María K. Kochaniec & Alberto Coz, 2023. "Slow Pyrolysis of Specialty Coffee Residues towards the Circular Economy in Rural Areas," Energies, MDPI, vol. 16(5), pages 1-21, February.
    9. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    10. Ramos, João S. & Ferreira, Ana F., 2022. "Techno-economic analysis and life cycle assessment of olive and wine industry co-products valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. He, Yao & Chen, Junjie & Li, Didi & Zhang, Qian & Liu, Dongxia & Liu, Jingyong & Ma, Xiaoqian & Wang, Tiejun, 2021. "Efficient production of aromatics by catalytic pyrolysis of fruit waste over zeolites with 3D pore topologies," Energy, Elsevier, vol. 223(C).
    12. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Samar Hadroug & Salah Jellali & Mejdi Jeguirim & Marzena Kwapinska & Helmi Hamdi & James J. Leahy & Witold Kwapinski, 2021. "Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    14. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    15. Han, Lanfang & Sun, Haoran & Sun, Ke & Yang, Yan & Fang, Liping & Xing, Baoshan, 2021. "Effect of Fe and Al ions on the production of biochar from agricultural biomass: Properties, stability and adsorption efficiency of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Masoudnia, Nima & Rafiee, Shahin & Zhang, Yijia & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries," Renewable Energy, Elsevier, vol. 201(P2), pages 70-86.
    17. Simona Ciuta & Stefano Antognoni & Elena Cristina Rada & Marco Ragazzi & Adrian Badea & Lucian Ionel Cioca, 2016. "Respirometric Index and Biogas Potential of Different Foods and Agricultural Discarded Biomass," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    18. Fernández-Puratich, Harald & Hernández, Diógenes & Tenreiro, Claudio, 2015. "Analysis of energetic performance of vine biomass residues as an alternative fuel for Chilean wine industry," Renewable Energy, Elsevier, vol. 83(C), pages 1260-1267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11187-:d:653355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.