IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p11019-d649904.html
   My bibliography  Save this article

Use of an Ethanol Bio-Refinery Product as a Soy Bean Alternative in Diets for Fast-Growing Meat Production Species: A Circular Economy Approach

Author

Listed:
  • Emily Burton

    (School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Southwell NG25 0QF, UK)

  • Dawn Scholey

    (School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Southwell NG25 0QF, UK)

  • Ashraf Alkhtib

    (School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Southwell NG25 0QF, UK)

  • Peter Williams

    (Fluid Quip Technologies, LLC, A Division of Green Plains Inc., Cedar Rapids, IA 52402, USA)

Abstract

The recent conceptual pivot from bioethanol production to ethanol biorefining has led to development of protein derived by fractionating the non-ethanol streams post fermentation within the plant. The aim of this study was to identify the effect of replacing dietary soy with corn-fermented protein (CFP) on performance of fast-growing meat species and the impact on the carbon footprint associated with the feed for each species. The study contains trials on 3 species, broiler, turkey and salmon. In trial one, 324 broiler chicks were allocated randomly to 36 pens distributed into 3 dietary treatments; control (0% CFP), 5% CFP and 10% CFP; for 35 days. In trial 2, 150 turkey poults were allocated to 3 treatments: control (0 CFP), 4% CFP and 8% CFP for 35 days. In trial 3, 525 Atlantic Salmon (starting weight 304 g ± 10.7 g) were raised in 15 saltwater tanks for 84 days with 5 treatments, control (0% CFP), 5% CFP, 10% CFP, 15% CFP and 20% CFP. Growth response, nutrient utilisation and carbon footprint were assessed in each trial. Replacement of soy with CFP showed limited differences in growth response and nutrient utilization but replacing soy bean meal with CFP at rate of 5%, 8% and 10% in broiler, turkey and salmon diets, respectively resulted in a 14% decrease in carbon footprint of diet manufacturing. This investigation shows coupling bioethanol production with poultry and salmon production represents a highly effective circular economy contributing to multiple UN Sustainable Development Goals.

Suggested Citation

  • Emily Burton & Dawn Scholey & Ashraf Alkhtib & Peter Williams, 2021. "Use of an Ethanol Bio-Refinery Product as a Soy Bean Alternative in Diets for Fast-Growing Meat Production Species: A Circular Economy Approach," Sustainability, MDPI, vol. 13(19), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11019-:d:649904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/11019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/11019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dickson, Rofice & Ryu, Jun-Hyung & Liu, J. Jay, 2018. "Optimal plant design for integrated biorefinery producing bioethanol and protein from Saccharina japonica: A superstructure-based approach," Energy, Elsevier, vol. 164(C), pages 1257-1270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansub Khan, Mohammad & Abbas, Abiha & Dickson, Rofice, 2023. "A strategy for commercialization of macroalga biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Zarei, Mohammadamin & Shams, Mohammad H. & Niaz, Haider & Won, Wangyun & Lee, Chul-Jin & Liu, J. Jay, 2022. "Risk-based multistage stochastic mixed-integer optimization for biofuel supply chain management under multiple uncertainties," Renewable Energy, Elsevier, vol. 200(C), pages 694-705.
    3. Dickson, Rofice & Liu, J. Jay, 2021. "A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization," Energy, Elsevier, vol. 221(C).
    4. Szulczyk, Kenneth R. & Tan, Yeng-May, 2022. "Economic feasibility and sustainability of commercial bioethanol from microalgal biomass: The case of Malaysia," Energy, Elsevier, vol. 253(C).
    5. Karagoz, Pınar & Bill, Roslyn M. & Ozkan, Melek, 2019. "Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations," Renewable Energy, Elsevier, vol. 143(C), pages 741-752.
    6. Brigljević, Boris & Liu, Jay J. & Lim, Hankwon, 2019. "Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle," Applied Energy, Elsevier, vol. 254(C).
    7. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    8. Liu, J. Jay & Dickson, Rofice & Niaz, Haider & Van Hal, Jaap W. & Dijkstra, J.W. & Fasahati, Peyman, 2022. "Production of fuels and chemicals from macroalgal biomass: Current status, potentials, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Fasahati, P. & Dickson, R. & Saffron, C.M. & Woo, H.C. & Liu, J. Jay, 2022. "Seaweeds as a sustainable source of bioenergy: Techno-economic and life cycle analyses of its biochemical conversion pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11019-:d:649904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.