IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10823-d646491.html
   My bibliography  Save this article

Investigating Wi-Fi, Bluetooth, and Bluetooth Low-Energy Signal Characteristics for Integration in Vehicle–Pedestrian Collision Warning Systems

Author

Listed:
  • Shahriar Mohammadi

    (Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada)

  • Karim Ismail

    (Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada)

  • Amir H. Ghods

    (Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada)

Abstract

The purpose of the study is to investigate the comparative field performance of Wi-Fi, Bluetooth Classic (Bluetooth) and Bluetooth Low Energy (BLE) signal modes for integration in vehicle–pedestrian collision warning systems. The study compares these wireless signal modes to find out which one is most appropriate to be utilized in these systems and provides better results in terms of accuracy and functionality. Five factors including received signal strength indicator (RSSI)-distance relationship, rainfall effects on the signals, motion effects, non-line of sight effects and signal transmission rates were selected for evaluation. These factors were selected considering the requirements of vehicle–pedestrian collision warning systems and compared with each other based on experimental outcomes. The results of the experiments indicated the overall superiority of BLE mode over Wi-Fi and Bluetooth modes to be utilized in these systems. Application of this mode may provide the possibility of fast collision warnings thanks to low signal transmission intervals and high probability of simultaneous signal detections by multiple signals scanners. Moreover, the capability of this mode to accurately estimate distance and position is higher than Wi-Fi mode and not significantly different from Bluetooth mode.

Suggested Citation

  • Shahriar Mohammadi & Karim Ismail & Amir H. Ghods, 2021. "Investigating Wi-Fi, Bluetooth, and Bluetooth Low-Energy Signal Characteristics for Integration in Vehicle–Pedestrian Collision Warning Systems," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10823-:d:646491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. An, Kun & Xie, Siyang & Ouyang, Yanfeng, 2018. "Reliable sensor location for object positioning and surveillance via trilateration," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 956-970.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    2. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    3. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    4. Xie, Siyang & An, Kun & Ouyang, Yanfeng, 2019. "Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 115-139.
    5. Cao, Jieyu & Chen, Junlan & Guo, Xiucheng & Wang, Ling, 2023. "Trajectory data-based severe conflict prediction for expressways under different traffic states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    6. Lu, Qing-Chang & Xu, Peng-Cheng & Zhang, Jingxiao, 2021. "Infrastructure-based transportation network vulnerability modeling and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    7. Sai Chand & Emily Moylan & S. Travis Waller & Vinayak Dixit, 2020. "Analysis of Vehicle Breakdown Frequency: A Case Study of New South Wales, Australia," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    8. Yu, Xinyao & Ma, Shoufeng & Zhu, Ning & Lam, William H.K. & Fu, Hao, 2023. "Ensuring the robustness of link flow observation systems in sensor failure events," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    9. Jiang, Zhoutong & Ouyang, Yanfeng, 2021. "Reliable location of first responder stations for cooperative response to disasters," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 20-32.
    10. Li, Jia & Li, Chengqian & Zhao, Xiaohua & Wang, Xuesong, 2024. "Do road network patterns and points of interest influence bicycle safety? Evidence from dockless bike sharing in China and policy implications for traffic safety planning," Transport Policy, Elsevier, vol. 149(C), pages 21-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10823-:d:646491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.