The Economy and Policy Incorporated Computing System for Social Energy and Power Consumption Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Attila Havas & Doris Schartinger & Matthias Weber, 2010. "The impact of foresight on innovation policy-making: recent experiences and future perspectives," Research Evaluation, Oxford University Press, vol. 19(2), pages 91-104, June.
- Liu, Da & Ruan, Liang & Liu, Jinchen & Huan, Huang & Zhang, Guowei & Feng, Yi & Li, Ying, 2018. "Electricity consumption and economic growth nexus in Beijing: A causal analysis of quarterly sectoral data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2498-2503.
- Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
- Gamze Nalcaci & Ayse Özmen & Gerhard Wilhelm Weber, 2019. "Long-term load forecasting: models based on MARS, ANN and LR methods," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1033-1049, December.
- He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Li, Yanying & Che, Jinxing & Yang, Youlong, 2018. "Subsampled support vector regression ensemble for short term electric load forecasting," Energy, Elsevier, vol. 164(C), pages 160-170.
- Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
- Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006.
"Interpolation and backdating with a large information set,"
Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
- Angelini, Elena & Henry, Jérôme & Marcellino, Massimiliano, 2003. "Interpolation and backdating with a large information set," Working Paper Series 252, European Central Bank.
- Henry, Jerome & Marcellino, Massimiliano & Angelini, Elena, 2004. "Interpolation and Backdating with A Large Information Set," CEPR Discussion Papers 4533, C.E.P.R. Discussion Papers.
- Giacomo Sbrana & Andrea Silvestrini, 2012.
"Temporal aggregation of cyclical models with business cycle applications,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 93-107, March.
- Giacomo Sbrana & Andrea Silvestrini, 2012. "Temporal aggregation of cyclical models with business cycle applications," Post-Print hal-00809247, HAL.
- Ruiz Estrada, Mario Arturo, 2011. "Policy modeling: Definition, classification and evaluation," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 523-536, July.
- Radu Porumb & Petru Postolache & George Serițan & Ramona Vatu & Oana Ceaki, 2013. "Load profiles analysis for electricity market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 1(2), pages 30-38, December.
- Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
- Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"U-MIDAS: MIDAS regressions with unrestricted lag polynomials,"
Discussion Paper Series 1: Economic Studies
2011,35, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Foroni, Claudia, 2012. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," CEPR Discussion Papers 8828, C.E.P.R. Discussion Papers.
- Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
- Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
- Peng Liu & Peijun Zheng & Ziyu Chen, 2019. "Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 12(12), pages 1-15, June.
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
- Xu, Guangyue & Yang, Hualiu & Schwarz, Peter, 2022. "A strengthened relationship between electricity and economic growth in China: An empirical study with a structural equation model," Energy, Elsevier, vol. 241(C).
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021.
"Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
- Lynda Khalaf & Maral Kichian & Charles Saunders & Marcel Voia, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Post-Print hal-03528880, HAL.
- J. Isaac Miller, 2014.
"Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012.
"Nowcasting German GDP: A comparison of bridge and factor models,"
Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
- Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
More about this item
Keywords
medium- and long-term electricity consumption forecast; policy quantification; low carbon economy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10473-:d:639800. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.