IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9511-d620719.html
   My bibliography  Save this article

Energy Distribution Modeling for Assessment and Optimal Distribution of Sustainable Energy for On-Grid Food, Energy, and Water Systems in Remote Microgrids

Author

Listed:
  • Michele J. Chamberlin

    (Alaska Center for Energy and Power (ACEP), University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Daniel J. Sambor

    (Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA)

  • Justus Karenzi

    (Electrical and Computer Engineering Department, College of Engineering and Mines, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Richard Wies

    (Professor and Department Chair, Electrical and Computer Engineering Department, College of Engineering and Mines, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Erin Whitney

    (Alaska Center for Energy and Power (ACEP), University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

Abstract

Food, energy, and water (FEW) are essential for human health and economic development. FEW systems are inextricably interlinked, yet individualized and variable. Consequently, an accurate assessment must include all available and proposed FEW components and their interconnections and consider scale, location, and scope. Remote Alaska locations are examples of isolated communities with limited infrastructure, accessibility, and extreme climate conditions. The resulting challenges for FEW reliability and sustainability create opportunities to obtain practical insights that may apply to other remote communities facing similar challenges. By creating energy distribution models (EDMs), a methodology is proposed, and a tool is developed to measure the impacts of renewable energy (RE) on small FEW systems connected to the microgrids of several Alaska communities. Observing the community FEW systems through an energy lens, three indices are used to measure FEW security: Energy–Water (EW), Energy–Food (EF), and Sustainable Energy (SE). The results indicate the impacts of RE on FEW infrastructure systems are highly seasonal, primarily because of the natural intermittence and seasonality of renewable resources. Overall, there is a large potential for RE integration to increase FEW security as well as a need for additional analysis and methods to further improve the resiliency of FEW systems in remote communities.

Suggested Citation

  • Michele J. Chamberlin & Daniel J. Sambor & Justus Karenzi & Richard Wies & Erin Whitney, 2021. "Energy Distribution Modeling for Assessment and Optimal Distribution of Sustainable Energy for On-Grid Food, Energy, and Water Systems in Remote Microgrids," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9511-:d:620719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel J. Sambor & Michelle Wilber & Erin Whitney & Mark Z. Jacobson, 2020. "Development of a Tool for Optimizing Solar and Battery Storage for Container Farming in a Remote Arctic Microgrid," Energies, MDPI, vol. 13(19), pages 1-18, October.
    2. Eichelberger, L.P., 2010. "Living in utility scarcity: Energy and water insecurity in Northwest Alaska," American Journal of Public Health, American Public Health Association, vol. 100(6), pages 1010-1018.
    3. Bassel T. Daher & Rabi H. Mohtar, 2015. "Water-energy-food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 748-771, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grace Bolt & Michelle Wilber & Daisy Huang & Daniel J. Sambor & Srijan Aggarwal & Erin Whitney, 2022. "Modeling and Evaluating Beneficial Matches between Excess Renewable Power Generation and Non-Electric Heat Loads in Remote Alaska Microgrids," Sustainability, MDPI, vol. 14(7), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Bayat & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2022. "Performance Evaluation of Agricultural Surface Water Distribution Systems Based on Water-food-energy Nexus and Using AHP-Entropy-WASPAS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4697-4720, September.
    2. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    3. Sang-Hyun Lee & Makoto Taniguchi & Rabi H. Mohtar & Jin-Yong Choi & Seung-Hwan Yoo, 2018. "An Analysis of the Water-Energy-Food-Land Requirements and CO 2 Emissions for Food Security of Rice in Japan," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    4. Fernando Caixeta & André M. Carvalho & Pedro Saraiva & Fausto Freire, 2022. "Sustainability-Focused Excellence: A Novel Model Integrating the Water–Energy–Food Nexus for Agro-Industrial Companies," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    5. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    6. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    8. Eichelberger, Laura, 2019. "Recognizing the dynamics of household water insecurity in the rapidly changing polar north: Expected uncertainties in access, quality, and consumption patterns in Niugtaq (Newtok), Alaska," World Development Perspectives, Elsevier, vol. 16(C).
    9. Xiangmin Zhang & Bin Yu & Hailong Yu & Zhuofan Li & Shen Luo & Jianwu Sun & Yong Fan, 2021. "Spatial Distribution and Geographical Mechanism of Natural Resources in China under the Orientation of the New Economic Demands," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    10. Hernández, Diana, 2016. "Understanding ‘energy insecurity’ and why it matters to health," Social Science & Medicine, Elsevier, vol. 167(C), pages 1-10.
    11. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Lin, Jian, 2021. "Racial disparities in energy poverty in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Adom, Philip Kofi & Amuakwa-Mensah, Franklin & Agradi, Mawunyo Prosper & Nsabimana, Aimable, 2021. "Energy poverty, development outcomes, and transition to green energy," Renewable Energy, Elsevier, vol. 178(C), pages 1337-1352.
    13. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    14. Wanglin Yan & Rob Roggema, 2019. "Developing a Design-Led Approach for the Food-Energy-Water Nexus in Cities," Urban Planning, Cogitatio Press, vol. 4(1), pages 123-138.
    15. Taguta, C. & Senzanje, A. & Kiala, Z. & Malota, M. & Mabhaudhi, Tafadzwanashe, 2022. "Water-energy-food nexus tools in theory and practice: a systematic review," Papers published in Journals (Open Access), International Water Management Institute, pages 1-4:837316..
    16. Zolfaghari, Mehdi & Jariani, Farzaneh, 2020. "Water-Energy-Food Nexus in the Middle East and North African Countries (MENA)," MPRA Paper 104583, University Library of Munich, Germany.
    17. Guijun Li & Daohan Huang & Yulong Li, 2016. "China’s Input-Output Efficiency of Water-Energy-Food Nexus Based on the Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 8(9), pages 1-16, September.
    18. Correa-Cano, M.E. & Salmoral, G. & Rey, D. & Knox, J.W. & Graves, A. & Melo, O. & Foster, W. & Naranjo, L. & Zegarra, E. & Johnson, C. & Viteri-Salazar, O. & Yan, X., 2022. "A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Bassel Daher & Rabi H. Mohtar & Efstratios N. Pistikopoulos & Kent E. Portney & Ronald Kaiser & Walid Saad, 2018. "Developing Socio-Techno-Economic-Political (STEP) Solutions for Addressing Resource Nexus Hotspots," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    20. Aurobrata Das & Bhabagrahi Sahoo & Sudhindra N. Panda, 2020. "Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2329-2351, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9511-:d:620719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.