IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h051025.html
   My bibliography  Save this article

Water-energy-food nexus tools in theory and practice: a systematic review

Author

Listed:
  • Taguta, C.
  • Senzanje, A.
  • Kiala, Z.
  • Malota, M.
  • Mabhaudhi, Tafadzwanashe

Abstract

Sector-based resource management approaches partly contribute to the insecurities in water, energy and food sectors and resources. These approaches fail to acknowledge and capture the interlinkages between these connected resources, a key strength in the water-energy-food (WEF) nexus approach. However, the multi-centric, multidimensional, and spatiotemporally dynamic WEF nexus is complex and uncertain, thus requiring dedicated tools that can unpack it. Various sources have blamed the slow uptake and practical implementation of the WEF nexus on the unavailability of appropriate tools and models. To confirm those claims with evidence, literature on WEF nexus tools was searched from Scopus and Web of Science and systematically reviewed using the PRISMA protocol. It was found that the WEF nexus tools are being developed increasingly, with a current cumulative number of at least 46 tools and models. However, their majority (61%) is unreachable to the intended users. Some available tools are in code format, which can undermine their applicability by users without programming skills. A good majority (70%) lack key capabilities such as geospatial features and transferability in spatial scale and geographic scope. Only 30% of the tools are applicable at local scales. In contrast, some tools are restricted in geographic scope and scale of application, for example, ANEMI 3 and WEF models for large and household scales, respectively. Most (61%) of the tools lack wide application in actual case studies; this was partly attributed to the tools not being readily available. Thus, efforts should be made to disseminate and ensure end-users’ uptake and application of developed tools. Alternatively, the user-friendly tools should be developed on-demand as requested and inspired by potential clients. Developers should consider utility, transferability and scalability across uses and users when improving existing tools and developing new tools so that they are adaptable, only requiring new, specific location-adapted inputs and data. Where and when it is necessary to capture spatial dynamics of the WEF nexus, tools should be geographic information system (GIS)-enabled for automatic WEF nexus location selection, geospatial mapping, and visualization. Such GIS-enabled WEF nexus tools can provide a bird’s eye view of hotspots and champions of WEF nexus practices.

Suggested Citation

  • Taguta, C. & Senzanje, A. & Kiala, Z. & Malota, M. & Mabhaudhi, Tafadzwanashe, 2022. "Water-energy-food nexus tools in theory and practice: a systematic review," Papers published in Journals (Open Access), International Water Management Institute, pages 1-4:837316..
  • Handle: RePEc:iwt:jounls:h051025
    DOI: 10.3389/frwa.2022.837316
    as

    Download full text from publisher

    File URL: https://www.frontiersin.org/articles/10.3389/frwa.2022.837316/pdf
    Download Restriction: no

    File URL: https://libkey.io/10.3389/frwa.2022.837316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giampietro, Mario & Mayumi, Kozo & Ramos-Martin, Jesus, 2009. "Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale," Energy, Elsevier, vol. 34(3), pages 313-322.
    2. Kaddoura, Saeed & El Khatib, Sameh, 2017. "Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making," Environmental Science & Policy, Elsevier, vol. 77(C), pages 114-121.
    3. Xue, Jingyan & Liu, Gengyuan & Casazza, Marco & Ulgiati, Sergio, 2018. "Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning," Energy, Elsevier, vol. 164(C), pages 475-495.
    4. Bassel T. Daher & Rabi H. Mohtar, 2015. "Water-energy-food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 748-771, September.
    5. Foster, T. & Brozović, N. & Butler, A.P. & Neale, C.M.U. & Raes, D. & Steduto, P. & Fereres, E. & Hsiao, T.C., 2017. "AquaCrop-OS: An open source version of FAO's crop water productivity model," Agricultural Water Management, Elsevier, vol. 181(C), pages 18-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Pulighe, Giuseppe & Pirelli, Tiziana, 2023. "Assessing the sustainability of bioenergy pathways through a land-water-energy nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    2. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    3. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Correa-Cano, M.E. & Salmoral, G. & Rey, D. & Knox, J.W. & Graves, A. & Melo, O. & Foster, W. & Naranjo, L. & Zegarra, E. & Johnson, C. & Viteri-Salazar, O. & Yan, X., 2022. "A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Mohammed Sakib Uddin & Khaled Mahmud & Bijoy Mitra & Al-Ekram Elahee Hridoy & Syed Masiur Rahman & Md Shafiullah & Md. Shafiul Alam & Md. Ismail Hossain & Mohammad Sujauddin, 2023. "Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    6. Sun, J. & Li, Y.P. & Suo, C. & Liu, J., 2020. "Development of an uncertain water-food-energy nexus model for pursuing sustainable agricultural and electric productions," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Oviroh, Peter Ozaveshe & Austin-Breneman, Jesse & Chien, Cheng-Chun & Chakravarthula, Praneet Nallan & Harikumar, Vaishnavi & Shiva, Pranjal & Kimbowa, Alvin Bagetuuma & Luntz, Jonathan & Miyingo, Emm, 2023. "Micro Water-Energy-Food (MicroWEF) Nexus: A system design optimization framework for Integrated Natural Resource Conservation and Development (INRCD) projects at community scale," Applied Energy, Elsevier, vol. 333(C).
    8. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    9. Fatemeh Bayat & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2022. "Performance Evaluation of Agricultural Surface Water Distribution Systems Based on Water-food-energy Nexus and Using AHP-Entropy-WASPAS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4697-4720, September.
    10. Mayumi, Kozo & Tanikawa, Hiroki, 2012. "Going beyond energy accounting for sustainability: Energy, fund elements and the economic process," Energy, Elsevier, vol. 37(1), pages 18-26.
    11. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    12. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    13. Sang-Hyun Lee & Makoto Taniguchi & Rabi H. Mohtar & Jin-Yong Choi & Seung-Hwan Yoo, 2018. "An Analysis of the Water-Energy-Food-Land Requirements and CO 2 Emissions for Food Security of Rice in Japan," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    14. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    15. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    16. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    17. Couix, Quentin, 2020. "Georgescu-Roegen's Flow-Fund Theory of Production in Retrospect," Ecological Economics, Elsevier, vol. 176(C).
    18. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    19. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    20. Palola, Pirta & Bailey, Richard & Wedding, Lisa, 2022. "A novel framework to operationalise value-pluralism in environmental valuation: Environmental value functions," Ecological Economics, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h051025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.