IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9015-d612940.html
   My bibliography  Save this article

A Many-Objective Optimization for an Eco-Efficient Flue Gas Desulfurization Process Using a Surrogate-Assisted Evolutionary Algorithm

Author

Listed:
  • Quande Dong

    (School of Information Engineering, Suzhou University, Suzhou 234000, China)

  • Cui Wang

    (Business School, Suzhou University, Suzhou 234000, China)

  • Shitong Peng

    (College of Engineering, Shantou University, Shantou 515063, China)

  • Ziting Wang

    (School of Fine Arts and Design, Suzhou University, Suzhou 234000, China)

  • Conghu Liu

    (School of Information Engineering, Suzhou University, Suzhou 234000, China)

Abstract

The flue gas desulfurization process in coal-fired power plants is energy and resource-intensive but the eco-efficiency of this process has scarcely been considered. Given the fluctuating unit load and complex desulfurization mechanism, optimizing the desulfurization system based on the traditional mechanistic model poses a great challenge. In this regard, the present study optimized the eco-efficiency from the perspective of operating data analysis. We formulated the issue of eco-efficiency improvement into a many-objective optimization problem. Considering the complexity between the system inputs and outputs and to further reduce the computational cost, we constructed a Kriging model and made a comparison between this model and the response surface methodology based on two accuracy metrics. This surrogate model was then incorporated into the NSGA-III algorithm to obtain the Pareto-optimal front. As this Pareto-optimal front provides multiple alternative operating options, we applied the TOPSIS to select the most appropriate alternative set of operating parameters. This approach was validated using the historical operation data from the desulfurization system at a coal-fired power plant in China with a 600 MW unit. The results indicated that the optimization would cause an improvement in the efficiency of desulfurization and energy efficiency but a slight increase in the consumption of limestone slurry. This study attempted to provide an effective operating strategy to enhance the eco-efficiency performance of desulfurization systems.

Suggested Citation

  • Quande Dong & Cui Wang & Shitong Peng & Ziting Wang & Conghu Liu, 2021. "A Many-Objective Optimization for an Eco-Efficient Flue Gas Desulfurization Process Using a Surrogate-Assisted Evolutionary Algorithm," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9015-:d:612940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yue, Li, 2012. "Dynamics of clean coal-fired power generation development in China," Energy Policy, Elsevier, vol. 51(C), pages 138-142.
    2. Liu, Conghu & Gao, Mengdi & Zhu, Guang & Zhang, Cuixia & Zhang, Pan & Chen, Jianqing & Cai, Wei, 2021. "Data driven eco-efficiency evaluation and optimization in industrial production," Energy, Elsevier, vol. 224(C).
    3. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    2. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    3. Zhanjie Feng & Zhenqi Hu & Xi Zhang & Yuhang Zhang & Ruihao Cui & Li Lu, 2023. "Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China," Land, MDPI, vol. 12(11), pages 1-15, October.
    4. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Does natural resources matter for sustainable energy development in China: The role of technological progress," Resources Policy, Elsevier, vol. 79(C).
    5. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    6. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    7. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    8. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    9. Zhu, Yao & Wang, Qinhui & Li, Kaikun & Cen, Jianmeng & Fang, Mengxiang & Ying, Chengdong, 2022. "Study on pressurized isothermal pyrolysis characteristics of low-rank coal in a pressurized micro-fluidized bed reaction analyzer," Energy, Elsevier, vol. 240(C).
    10. Dongsen Li & Kang Qian & Ciwei Gao & Yiyue Xu & Qiang Xing & Zhangfan Wang, 2024. "Research on Electric Hydrogen Hybrid Storage Operation Strategy for Wind Power Fluctuation Suppression," Energies, MDPI, vol. 17(20), pages 1-15, October.
    11. Zeng, Yingying, 2017. "Indirect double regulation and the carbon ETSs linking: The case of coal-fired generation in the EU and China," Energy Policy, Elsevier, vol. 111(C), pages 268-280.
    12. Aiyong Lin & Yujia Liu & Shuling Zhou & Yajie Zhang & Cui Wang & Heping Ding, 2023. "Data-Driven Analysis and Evaluation of Regional Resources and the Environmental Carrying Capacity," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    13. Xiling Zhang & Xiaoqian Liu & Zeyu Zhang & Ruiyi Tang & Ting Zhang & Jian Yao, 2024. "The Synergistic Effect of the Carbon Emission Trading Scheme on Pollution and Carbon Reduction in China’s Power Industry," Sustainability, MDPI, vol. 16(19), pages 1-17, October.
    14. Wang Gao & Jiajia Wei & Shixiong Yang, 2023. "The Asymmetric Effects of Extreme Climate Risk Perception on Coal Futures Return Dynamics: Evidence from Nonparametric Causality-In-Quantiles Tests," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    15. Liu, Baoliu & Cifuentes-Faura, Javier & Ding, Chante Jian & Liu, Xiaoqian, 2023. "Toward carbon neutrality: How will environmental regulatory policies affect corporate green innovation?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1006-1020.
    16. Xing, Zhizhong & Zhao, Shuanfeng & Guo, Wei & Meng, Fanyuan & Guo, Xiaojun & Wang, Shenquan & He, Haitao, 2023. "Coal resources under carbon peak: Segmentation of massive laser point clouds for coal mining in underground dusty environments using integrated graph deep learning model," Energy, Elsevier, vol. 285(C).
    17. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    18. Xin, Tuantuan & Zhang, Yifei & Li, Xikang & Xu, Hongyu & Xu, Cheng, 2024. "A novel coal-based Allam cycle coupled to CO2 gasification with improved thermodynamic and economic performance," Energy, Elsevier, vol. 293(C).
    19. Zhao, Qian & Qin, Chuan & Ding, Longfei & Cheng, Ying-Yue & Vătavu, Sorana, 2023. "Can green bond improve the investment efficiency of renewable energy?," Energy Economics, Elsevier, vol. 127(PB).
    20. Niu, Yu & Suo, Yonglu & Niu, Xian, 2023. "Insights into the response mechanism of Fusarium sp. NF01 during lignite biodegradation using proteomic analysis," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9015-:d:612940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.