IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8964-d612102.html
   My bibliography  Save this article

Evaluation of the Use of a Road Diet Design: An Urban Corridor Case Study in Washington, DC

Author

Listed:
  • Mohammad A. Aljamal

    (Precision Systems, Inc. (PSI), Washington, DC 20003, USA)

  • Derek Voight

    (District Department of Transportation, Washington, DC 20003, USA)

  • Jacob Green

    (Precision Systems, Inc. (PSI), Washington, DC 20003, USA)

  • Jianwei Wang

    (Precision Systems, Inc. (PSI), Washington, DC 20003, USA)

  • Huthaifa I. Ashqar

    (Precision Systems, Inc. (PSI), Washington, DC 20003, USA)

Abstract

A traditional road diet design converts a four-lane two-way road to a three-lane road consisting of two through lanes and a center two-way left turn lane. This paper introduces a new application of the road diet design in an urban corridor. Specifically, the new application converts a four-lane two-way road into a two-lane two-way road with full-time parking lanes in both directions. The paper analyzed the traffic impacts of the road diet application on the corridor of New Jersey Avenue, northwest, in the city of Washington, District of Columbia. The corridor included five signalized and one unsignalized intersections. Before-and-after analyses using Synchro 11 simulation and Site-Specific Empirical Bayes analysis were used to evaluate and compare existing and proposed scenarios. The proposed scenario provided various benefits including offering accessibility to the businesses in the area and acting as a traffic calming strategy. For signalized intersections, the overall performance remained the same for most intersections except for one intersection (on P Street), as it is significantly impacted by the road diet design due to the dramatic increase of traffic volumes in its minor streets as a result of diverting traffic volumes from the unsignalized intersection for left and through movements. Results showed that the use of a road diet design enhanced the unsignalized intersection performance due to the traffic volume divergence from its minor streets and enhanced the safety of the study area by decreasing the annual number of predicted crashes. To achieve better operational benefits and reflect traffic demands, the paper recommends to re-optimize signal timings when a road diet design is adopted.

Suggested Citation

  • Mohammad A. Aljamal & Derek Voight & Jacob Green & Jianwei Wang & Huthaifa I. Ashqar, 2021. "Evaluation of the Use of a Road Diet Design: An Urban Corridor Case Study in Washington, DC," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8964-:d:612102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sohn, Keemin, 2011. "Multi-objective optimization of a road diet network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 499-511, July.
    2. Alastair Brown, 2015. "Costs and benefits," Nature Climate Change, Nature, vol. 5(9), pages 803-803, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Eichler & Hillel Bar-Gera & Meir Blachman, 2013. "Vortex-Based Zero-Conflict Design of Urban Road Networks," Networks and Spatial Economics, Springer, vol. 13(3), pages 229-254, September.
    2. Paweł Pistelok & Daniel Štraub, 2021. "Evaluation of the Road Policy in the Light of Vision Zero in Jaworzno, Poland," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    3. C. S. Shui & W. L. Chan, 2019. "Optimization of a Bikeway Network with Selective Nodes," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    4. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    5. Chung, Jin-Hyuk & Bae, Yun Kyung & Kim, Jinhee, 2016. "Optimal sustainable road plans using multi-objective optimization approach," Transport Policy, Elsevier, vol. 49(C), pages 105-113.
    6. Salcedo-Sanz, S. & Cuadra, L. & Alexandre-Cortizo, E. & Jiménez-Fernández, S. & Portilla-Figueras, A., 2014. "Soft-Computing: An innovative technological solution for urban traffic-related problems in modern cities," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 236-244.
    7. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    8. Andreas Kiesel & Moritz Wagner & Iris Lewandowski, 2016. "Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?," Sustainability, MDPI, vol. 9(1), pages 1-20, December.
    9. Ilija Coric & Katija Vojvodic, 2018. "Variable Pay 2.0: Transforming The Post-Transitional Context In Warehouse Logistics," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 18, pages 109-123.
    10. Yang, Zhao & Zhang, Yuanyuan & Grembek, Offer, 2016. "Combining traffic efficiency and traffic safety in countermeasure selection to improve pedestrian safety at two-way stop controlled intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 286-301.
    11. Shahid Mahmood & Muazzam Sabir & Ghaffar Ali, 2020. "Infrastructure projects and sustainable development: Discovering the stakeholders’ perception in the case of the China–Pakistan Economic Corridor," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    12. Meimei Wu & Wei Ge & Zening Wu & Xi Guo & Danyang Di & Shuoqiao Huang, 2020. "Evaluation of the Benefits of Urban Water Resource Utilization Based on the Catastrophe and Emergy Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1843-1853, April.
    13. Shrestha, Jagat K. & Benta, Agostinho & Lopes, Rui B. & Lopes, Nuno, 2014. "A multi-objective analysis of a rural road network problem in the hilly regions of Nepal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 43-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8964-:d:612102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.