IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8385-d602612.html
   My bibliography  Save this article

Study of the Properties of Full Component Recycled Dry-Mixed Masonry Mortar and Concrete Prepared from Construction Solid Waste

Author

Listed:
  • Zhenwen Hu

    (College of Architectural Engineering, Qingdao Agricultural University, Qingdao 266109, China)

  • Zhe Kong

    (Qingdao Real Estate Vocational Secondary Specialized School, Qingdao 266034, China)

  • Guisheng Cai

    (Shandong Academy of Building Research Co., Ltd., Jinan 255000, China)

  • Qiuyi Li

    (College of Architectural Engineering, Qingdao Agricultural University, Qingdao 266109, China)

  • Yuanxin Guo

    (College of Architectural Engineering, Qingdao Agricultural University, Qingdao 266109, China)

  • Dunlei Su

    (School of Traffic Civil Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Junzhe Liu

    (College of Architectural Engineering, Qingdao Agricultural University, Qingdao 266109, China)

  • Shidong Zheng

    (Shandong Junhong Environmental Technology Co., Ltd., Zibo 255000, China)

Abstract

Solutions are needed to solve the problem of a large amount of construction solid waste and a shortage of natural aggregate (coarse and fine aggregates). In this paper, simple-crushed coarse aggregate (SCRCA) and simple-crushed fine aggregate (SCRFA) were obtained by simple-crushing of construction solid waste. On this basis, SCRCA and SCRFA were treated with particle-shaping to obtain particle-shaping coarse aggregate (PSRCA) and particle-shaping fine aggregate (PSRFA), and the recycled powder (RP) produced in the process of particle-shaping was collected. Under the condition of a 1:4 cement-sand ratio, RP was used to replace cement with four substitution rates of 0, 10%, 20%, and 30%, and dry-mixed masonry mortar was prepared with 100% SCRFA, PSRFA, and river sand (RS). The basic and mechanical properties and microstructure of hydration products of dry-mixed mortar were analyzed, and the maximum substitution rate of RP was determined. Under the condition that the amount of cementitious material is 400 kg/m 3 and the RP is at the maximum replacement rate, three different aggregate combinations to prepare concrete are the 100% use of SCRCA and SCRFA, PSRCA and PSRFA, and RS and natural aggregate (NCA); the workability, mechanical properties, and aggregate interface transition zone of the prepared concrete were analyzed. The results show that when the replacement rate of RP is less than 20%, it has little effect on the properties of products. The performance of PSRCA and PSRFA after treatment is better than that of SCRCA and SCRFA. Under different RP substitution rates, the performance of dry-mixed mortar prepared with PSRFA is very close to that prepared with RS. The performance of recycled concrete prepared with PSRCA and PSRFA is also very close to that of products prepared with NCA and RS. The failure morphology of PSRCA and RSRFA concrete is also similar to that of NCA and RS concrete.

Suggested Citation

  • Zhenwen Hu & Zhe Kong & Guisheng Cai & Qiuyi Li & Yuanxin Guo & Dunlei Su & Junzhe Liu & Shidong Zheng, 2021. "Study of the Properties of Full Component Recycled Dry-Mixed Masonry Mortar and Concrete Prepared from Construction Solid Waste," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8385-:d:602612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie Li & Hao Zhou & Wenwen Chen & Zhongfan Chen, 2021. "Mechanical Properties of a New Type Recycled Aggregate Concrete Interlocking Hollow Block Masonry," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    2. Ana María Bravo-German & Iván Daniel Bravo-Gómez & Jaime A. Mesa & Aníbal Maury-Ramírez, 2021. "Mechanical Properties of Concrete Using Recycled Aggregates Obtained from Old Paving Stones," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    3. Valeria Superti & Cynthia Houmani & Ralph Hansmann & Ivo Baur & Claudia R. Binder, 2021. "Strategies for a Circular Economy in the Construction and Demolition Sector: Identifying the Factors Affecting the Recommendation of Recycled Concrete," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    4. Junfang Sun & Ji Chen & Xin Liao & Angran Tian & Jinxu Hao & Yuchen Wang & Qiang Tang, 2021. "The Workability and Crack Resistance of Natural and Recycled Aggregate Mortar Based on Expansion Agent through an Environmental Study," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    5. Sara Boudali & Bahira Abdulsalam & Amir Hossein Rafiean & Sébastien Poncet & Ahmed Soliman & Adel ElSafty, 2021. "Influence of Fine Recycled Concrete Powder on the Compressive Strength of Self-Compacting Concrete (SCC) Using Artificial Neural Network," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    6. Mahdi Naeini & Alireza Mohammadinia & Arul Arulrajah & Suksun Horpibulsuk, 2021. "Recycled Glass Blends with Recycled Concrete Aggregates in Sustainable Railway Geotechnics," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Ma & Junhui Li & Shaoping Huang & Henglin Xiao, 2022. "Analysis of Shear Resistance and Mechanism of Construction and Demolition Waste Improved by Polyurethane," Sustainability, MDPI, vol. 14(13), pages 1-17, July.
    2. Byeong Hun Woo & Jeong Bae Lee & Hyunseok Lee & Hong Gi Kim, 2022. "Aggregate Simulation with Statistical Approach Considering Substituting," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
    3. Yang Yu & Peihan Wang & Zexin Yu & Gongbing Yue & Liang Wang & Yuanxin Guo & Qiuyi Li, 2021. "Study on the Effect of Recycled Coarse Aggregate on the Shrinkage Performance of Green Recycled Concrete," Sustainability, MDPI, vol. 13(23), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yu & Peihan Wang & Zexin Yu & Gongbing Yue & Liang Wang & Yuanxin Guo & Qiuyi Li, 2021. "Study on the Effect of Recycled Coarse Aggregate on the Shrinkage Performance of Green Recycled Concrete," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    2. Emerson Felipe Felix & Edna Possan & Rogério Carrazedo, 2021. "A New Formulation to Estimate the Elastic Modulus of Recycled Concrete Based on Regression and ANN," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    3. Artit Udomchai & Menglim Hoy & Apichat Suddeepong & Amornrit Phuangsombat & Suksun Horpibulsuk & Arul Arulrajah & Nguyen Chi Thanh, 2021. "Generalized Interface Shear Strength Equation for Recycled Materials Reinforced with Geogrids," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    4. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    5. Mazen J. Al-Kheetan & Juliana Byzyka & Seyed Hamidreza Ghaffar, 2021. "Sustainable Valorisation of Silane-Treated Waste Glass Powder in Concrete Pavement," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    6. Aníbal Maury-Ramírez & Danny Illera-Perozo & Jaime A. Mesa, 2022. "Circular Economy in the Construction Sector: A Case Study of Santiago de Cali (Colombia)," Sustainability, MDPI, vol. 14(3), pages 1-17, February.
    7. Daniel Parra-Molina & Manuel Alejandro Rojas-Manzano & Adriana Gómez-Gómez & Mario Fernando Muñoz-Vélez & Aníbal Maury-Ramírez, 2023. "Mechanical Performance of Mortars with Partial Replacement of Cement by Aluminum Dross: Inactivation and Particle Size," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    8. Kaiyue Zhao & Peng Zhang & Bing Wang & Yupeng Tian & Shanbin Xue & Yuan Cong, 2021. "Preparation of Electric- and Magnetic-Activated Water and Its Influence on the Workability and Mechanical Properties of Cement Mortar," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    9. Carlos D. A. Loureiro & Caroline F. N. Moura & Mafalda Rodrigues & Fernando C. G. Martinho & Hugo M. R. D. Silva & Joel R. M. Oliveira, 2022. "Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    10. Aníbal Maury-Ramírez & Nele De Belie, 2023. "Environmental and Economic Assessment of Eco-Concrete for Residential Buildings: A Case Study of Santiago de Cali (Colombia)," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    11. Alan, Hale & Köker, Ali Rıza, 2023. "Analyzing and mapping agricultural waste recycling research: An integrative review for conceptual framework and future directions," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8385-:d:602612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.