IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2463-d505411.html
   My bibliography  Save this article

Recycled Glass Blends with Recycled Concrete Aggregates in Sustainable Railway Geotechnics

Author

Listed:
  • Mahdi Naeini

    (Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne 3122, Australia)

  • Alireza Mohammadinia

    (Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne 3122, Australia)

  • Arul Arulrajah

    (Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne 3122, Australia)

  • Suksun Horpibulsuk

    (School of Civil Engineering, Civil and Infrastructure Engineering Program, and Center of Excellence in Innovation for Sustainable Infrastructure Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
    Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand)

Abstract

This research investigates the static and cyclic characteristics of recycled glass (RG) as a supplementary material with recycled concrete aggregate (RCA) in the rail track capping layer. RG was blended by-weight with RCA in 10% increments up to 50% RG content. A performance-based laboratory testing scheme was designed according to the field loading conditions of capping layers in rail tracks. Basic geotechnical properties of RG + RCA blends were evaluated through their particle size distribution, compaction properties, and California bearing ratio. Effect of flooding was assessed with one-dimensional static and cyclic compression tests. Multistage triaxial compression tests were performed to determine the effect of RG content on shear strength parameters. A new repeated loading triaxial testing protocol was introduced for railway capping layer materials to assess the stiffness of RG blends to cyclic loading. Long term performance of samples also was evaluated through multistage cyclic permanent deformation tests. The shakedown concept was used to assess the permanent deformation results of RG + RCA samples. Results indicated that RG can be used effectively as a supplementary geomaterial in construction of rail track substructure.

Suggested Citation

  • Mahdi Naeini & Alireza Mohammadinia & Arul Arulrajah & Suksun Horpibulsuk, 2021. "Recycled Glass Blends with Recycled Concrete Aggregates in Sustainable Railway Geotechnics," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2463-:d:505411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2463/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artit Udomchai & Menglim Hoy & Apichat Suddeepong & Amornrit Phuangsombat & Suksun Horpibulsuk & Arul Arulrajah & Nguyen Chi Thanh, 2021. "Generalized Interface Shear Strength Equation for Recycled Materials Reinforced with Geogrids," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    2. Zhenwen Hu & Zhe Kong & Guisheng Cai & Qiuyi Li & Yuanxin Guo & Dunlei Su & Junzhe Liu & Shidong Zheng, 2021. "Study of the Properties of Full Component Recycled Dry-Mixed Masonry Mortar and Concrete Prepared from Construction Solid Waste," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    3. Yang Yu & Peihan Wang & Zexin Yu & Gongbing Yue & Liang Wang & Yuanxin Guo & Qiuyi Li, 2021. "Study on the Effect of Recycled Coarse Aggregate on the Shrinkage Performance of Green Recycled Concrete," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    4. Mazen J. Al-Kheetan & Juliana Byzyka & Seyed Hamidreza Ghaffar, 2021. "Sustainable Valorisation of Silane-Treated Waste Glass Powder in Concrete Pavement," Sustainability, MDPI, vol. 13(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2463-:d:505411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.