IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8172-d598799.html
   My bibliography  Save this article

Investigation of the Formation Mechanism and Environmental Risk of Tire—Pavement Wearing Waste (TPWW)

Author

Listed:
  • Kechen Wang

    (School of Information Engineering, Harbin University, Harbin 150086, China)

  • Xiangyu Chu

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Jiao Lin

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Qilin Yang

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Zepeng Fan

    (Institute of Highway Engineering, RWTH Aachen University, 52074 Aachen, Germany)

  • Dawei Wang

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
    Institute of Highway Engineering, RWTH Aachen University, 52074 Aachen, Germany)

  • Markus Oeser

    (Institute of Highway Engineering, RWTH Aachen University, 52074 Aachen, Germany)

Abstract

Tire—pavement interaction behaviours result in large amounts of wearing waste matter, which attaches to the surface of the pavement and is directly exposed to the surrounding environment. This kind of matter imposes a great challenge to the environment of the road area. The current study is devoted to carrying out a comprehensive investigation of the formation mechanism of tire—pavement wearing waste (TPWW), as well as the resulting environmental risks. A self-developed piece of accelerated polishing equipment, the Harbin advanced polishing machine (HAPM), was employed to simulate the wearing process between vehicle tires and pavement surfaces, and the TPWW was collected to conduct morphological, physical, and chemical characterisations. The results from this study show that the production rate of TPWW decreases with the increase in polishing duration, and the coarse particles (diameters greater than 0.425 mm) account for most of the TPWW obtained. The fine fraction (diameter smaller than 0.425 mm) of the TPWW comprises variously sized and irregularly shaped rubber particles from the tire, as well as uniformly sized and angular fine aggregates. The environmental analysis results show that volatile alkanes (C9–C16) are the major organic contaminants in TPWW. The Open-Graded Friction Course (OGFC) asphalt mixture containing crumb rubber as a modifier showed the highest risk of heavy metal pollution, and special concern must be given to tire materials for the purpose of improving the environmental conditions of road areas. The use of polyurethane as a binder material in the production of pavement mixtures has an environmental benefit in terms of pollution from both organic contaminants and heavy metals.

Suggested Citation

  • Kechen Wang & Xiangyu Chu & Jiao Lin & Qilin Yang & Zepeng Fan & Dawei Wang & Markus Oeser, 2021. "Investigation of the Formation Mechanism and Environmental Risk of Tire—Pavement Wearing Waste (TPWW)," Sustainability, MDPI, vol. 13(15), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8172-:d:598799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, V. K. & Fortuna, F. & Mincarini, M. & Berillo, M. & Cornacchia, G., 2000. "Disposal of waste tyres for energy recovery and safe environment," Applied Energy, Elsevier, vol. 65(1-4), pages 381-394, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klinger, Jordan L. & Westover, Tyler L. & Emerson, Rachel M. & Williams, C. Luke & Hernandez, Sergio & Monson, Glen D. & Ryan, J. Chadron, 2018. "Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities," Applied Energy, Elsevier, vol. 228(C), pages 535-545.
    2. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    3. Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    5. Chen, Wei-Ting & Ma, Chin-Chi & Lee, Ming-Hsun & Chu, Yung-Chuan & Tsai, Lung-Chang & Shu, Chi-Min, 2012. "Silver recovery and chemical oxygen demand (COD) removal from waste fixer solutions," Applied Energy, Elsevier, vol. 100(C), pages 187-192.
    6. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    7. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8172-:d:598799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.