IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p8087-d597605.html
   My bibliography  Save this article

The Partnership of Citizen Science and Machine Learning: Benefits, Risks, and Future Challenges for Engagement, Data Collection, and Data Quality

Author

Listed:
  • Maryam Lotfian

    (Institute INSIT, School of Business and Engineering Vaud, University of Applied Sciences and Arts Western Switzerland, 1400 Yverdon-les-Bains, Switzerland
    Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy)

  • Jens Ingensand

    (Institute INSIT, School of Business and Engineering Vaud, University of Applied Sciences and Arts Western Switzerland, 1400 Yverdon-les-Bains, Switzerland)

  • Maria Antonia Brovelli

    (Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy)

Abstract

Advances in artificial intelligence (AI) and the extension of citizen science to various scientific areas, as well as the generation of big citizen science data, are resulting in AI and citizen science being good partners, and their combination benefits both fields. The integration of AI and citizen science has mostly been used in biodiversity projects, with the primary focus on using citizen science data to train machine learning (ML) algorithms for automatic species identification. In this article, we will look at how ML techniques can be used in citizen science and how they can influence volunteer engagement, data collection, and data validation. We reviewed several use cases from various domains and categorized them according to the ML technique used and the impact of ML on citizen science in each project. Furthermore, the benefits and risks of integrating ML in citizen science are explored, and some recommendations are provided on how to enhance the benefits while mitigating the risks of this integration. Finally, because this integration is still in its early phases, we have proposed some potential ideas and challenges that can be implemented in the future to leverage the power of the combination of citizen science and AI, with the key emphasis being on citizen science in this article.

Suggested Citation

  • Maryam Lotfian & Jens Ingensand & Maria Antonia Brovelli, 2021. "The Partnership of Citizen Science and Machine Learning: Benefits, Risks, and Future Challenges for Engagement, Data Collection, and Data Quality," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8087-:d:597605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/8087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/8087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seth Cooper & Firas Khatib & Adrien Treuille & Janos Barbero & Jeehyung Lee & Michael Beenen & Andrew Leaver-Fay & David Baker & Zoran Popović & Foldit players, 2010. "Predicting protein structures with a multiplayer online game," Nature, Nature, vol. 466(7307), pages 756-760, August.
    2. Lucas N. Joppa, 2017. "The case for technology investments in the environment," Nature, Nature, vol. 552(7685), pages 325-328, December.
    3. Oisin Mac Aodha & Rory Gibb & Kate E Barlow & Ella Browning & Michael Firman & Robin Freeman & Briana Harder & Libby Kinsey & Gary R Mead & Stuart E Newson & Ivan Pandourski & Stuart Parsons & Jon Rus, 2018. "Bat detective—Deep learning tools for bat acoustic signal detection," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koehler, Maximilian & Sauermann, Henry, 2024. "Algorithmic management in scientific research," Research Policy, Elsevier, vol. 53(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Safferling & Aaron Lowen, 2011. "Economics in the Kingdom of Loathing: Analysis of Virtual Market Data," Working Paper Series of the Department of Economics, University of Konstanz 2011-30, Department of Economics, University of Konstanz.
    2. Prpić, John & Shukla, Prashant P. & Kietzmann, Jan H. & McCarthy, Ian P., 2015. "How to work a crowd: Developing crowd capital through crowdsourcing," Business Horizons, Elsevier, vol. 58(1), pages 77-85.
    3. Kovacs, Attila, 2018. "Gender Differences in Equity Crowdfunding," OSF Preprints 5pcmb, Center for Open Science.
    4. Sandhya Sharma & Kazuhiko Sato & Bishnu Prasad Gautam, 2023. "A Methodological Literature Review of Acoustic Wildlife Monitoring Using Artificial Intelligence Tools and Techniques," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    5. Fábio Duarte & Ricardo Álvarez, 2019. "The data politics of the urban age," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-7, December.
    6. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    7. Naihui Zhou & Zachary D Siegel & Scott Zarecor & Nigel Lee & Darwin A Campbell & Carson M Andorf & Dan Nettleton & Carolyn J Lawrence-Dill & Baskar Ganapathysubramanian & Jonathan W Kelly & Iddo Fried, 2018. "Crowdsourcing image analysis for plant phenomics to generate ground truth data for machine learning," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-16, July.
    8. Spartaco Albertarelli & Piero Fraternali & Sergio Herrera & Mark Melenhorst & Jasminko Novak & Chiara Pasini & Andrea-Emilio Rizzoli & Cristina Rottondi, 2018. "A Survey on the Design of Gamified Systems for Energy and Water Sustainability," Games, MDPI, vol. 9(3), pages 1-34, June.
    9. Robert Swain & Alex Berger & Josh Bongard & Paul Hines, 2015. "Participation and Contribution in Crowdsourced Surveys," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    10. Franzoni, Chiara & Sauermann, Henry, 2014. "Crowd science: The organization of scientific research in open collaborative projects," Research Policy, Elsevier, vol. 43(1), pages 1-20.
    11. Sam Mavandadi & Stoyan Dimitrov & Steve Feng & Frank Yu & Uzair Sikora & Oguzhan Yaglidere & Swati Padmanabhan & Karin Nielsen & Aydogan Ozcan, 2012. "Distributed Medical Image Analysis and Diagnosis through Crowd-Sourced Games: A Malaria Case Study," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-8, May.
    12. Sherwani, Y & Ahmed, M & Muntasir, M & El-Hilly, A & Iqbal, S & Siddiqui, S & Al-Fagih, Z & Usmani, O & Eisingerich, AB, 2015. "Examining the role of gamification and use of mHealth apps in the context of smoking cessation: A review of extant knowledge and outlook," Working Papers 25458, Imperial College, London, Imperial College Business School.
    13. Joanna Chataway & Sarah Parks & Elta Smith, 2017. "How Will Open Science Impact on University-Industry Collaboration?," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 11(2), pages 44-53.
    14. Ayat Abourashed & Laura Doornekamp & Santi Escartin & Constantianus J. M. Koenraadt & Maarten Schrama & Marlies Wagener & Frederic Bartumeus & Eric C. M. van Gorp, 2021. "The Potential Role of School Citizen Science Programs in Infectious Disease Surveillance: A Critical Review," IJERPH, MDPI, vol. 18(13), pages 1-18, June.
    15. Jennifer Lewis Priestley & Robert J. McGrath, 2019. "The Evolution of Data Science: A New Mode of Knowledge Production," International Journal of Knowledge Management (IJKM), IGI Global, vol. 15(2), pages 97-109, April.
    16. Vito D’Orazio & Michael Kenwick & Matthew Lane & Glenn Palmer & David Reitter, 2016. "Crowdsourcing the Measurement of Interstate Conflict," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-21, June.
    17. Yury Kryvasheyeu & Haohui Chen & Esteban Moro & Pascal Van Hentenryck & Manuel Cebrian, 2015. "Performance of Social Network Sensors during Hurricane Sandy," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    18. Prpić, John, 2017. "How To Work A Crowd: Developing Crowd Capital Through Crowdsourcing," SocArXiv jer9k, Center for Open Science.
    19. Devis Tuia & Benjamin Kellenberger & Sara Beery & Blair R. Costelloe & Silvia Zuffi & Benjamin Risse & Alexander Mathis & Mackenzie W. Mathis & Frank Langevelde & Tilo Burghardt & Roland Kays & Holger, 2022. "Perspectives in machine learning for wildlife conservation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Siluo Yang & Dietmar Wolfram & Feifei Wang, 2017. "The relationship between the author byline and contribution lists: a comparison of three general medical journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1273-1296, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8087-:d:597605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.