IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7536-d589294.html
   My bibliography  Save this article

Proposed Changes in Polish Agricultural Products Consumption Structure for 2030 Based on Data from 2008–2018

Author

Listed:
  • Anna Kuczuk

    (Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Katarzyna Widera

    (Faculty of Economics and Management, Opole University of Technology, 45-758 Opole, Poland)

Abstract

The type of acquired food products is a derivative of various factors which depend both on economic aspects and consumer awareness. The purpose of this article is to present possible scenarios of changes in Polish agricultural products consumption structure in 2030 which may be due to increased consumer awareness and a transition to a more sustainable consumption. Suggested scenarios took into account both the supply side of Polish agricultural consumer products and the demand for such products. This study is based on data retrieved from FAOSTAT and Poland’s Central Statistical Office. We demonstrated that domestic agricultural production is capable of supplying Poland’s population with a sufficient amount of high-energy food products and proteins. Moreover, suggested scenarios anticipating reduced consumption of selected types of meat and cereals should not cause energy or protein deficiency. Total available energy (kcal/cap/day) in a scenario with reduced intake of selected animal and plant products (+/−75% scenario) could be 4141 while maintaining a balanced proportion of energy derived from protein (14.5%), animal proteins (48%) and an increase in the share of energy from plant production.

Suggested Citation

  • Anna Kuczuk & Katarzyna Widera, 2021. "Proposed Changes in Polish Agricultural Products Consumption Structure for 2030 Based on Data from 2008–2018," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7536-:d:589294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jelena Vapa-Tankosić & Svetlana Ignjatijević & Jelena Kiurski & Jovana Milenković & Irena Milojević, 2020. "Analysis of Consumers’ Willingness to Pay for Organic and Local Honey in Serbia," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    2. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    3. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    4. Adrian Muller & Christian Schader & Nadia El-Hage Scialabba & Judith Brüggemann & Anne Isensee & Karl-Heinz Erb & Pete Smith & Peter Klocke & Florian Leiber & Matthias Stolze & Urs Niggli, 2017. "Strategies for feeding the world more sustainably with organic agriculture," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    5. Anonymous, 1960. "Food and Agriculture Organization," International Organization, Cambridge University Press, vol. 14(3), pages 460-462, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Mazur-Włodarczyk & Agnieszka Gruszecka-Kosowska, 2022. "Sustainable or Not? Insights on the Consumption of Animal Products in Poland," IJERPH, MDPI, vol. 19(20), pages 1-23, October.
    2. Anna Kuczuk & Katarzyna Widera, 2021. "A Greater Share of Organic Agriculture in Relation to Food Security Resulting from the Energy Demand Obtained from Food—Scenarios for Poland until 2030," Energies, MDPI, vol. 14(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    2. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    3. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    4. Joseph, Sarah & Peters, Irene & Friedrich, Hanno, 2019. "Can Regional Organic Agriculture Feed the Regional Community? A Case Study for Hamburg and North Germany," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    5. Niraj Prakash Joshi & Luni Piya, 2021. "Food and Nutrient Supply from Organic Agriculture in the Least Developed Countries and North America," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    6. Valeria Borsellino & Emanuele Schimmenti & Hamid El Bilali, 2020. "Agri-Food Markets towards Sustainable Patterns," Sustainability, MDPI, vol. 12(6), pages 1-35, March.
    7. Anna Kuczuk & Katarzyna Widera, 2021. "A Greater Share of Organic Agriculture in Relation to Food Security Resulting from the Energy Demand Obtained from Food—Scenarios for Poland until 2030," Energies, MDPI, vol. 14(21), pages 1-19, October.
    8. Frank Eyhorn & Marrit Van den Berg & Charlotte Decock & Harro Maat & Ashish Srivastava, 2018. "Does Organic Farming Provide a Viable Alternative for Smallholder Rice Farmers in India?," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    9. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    11. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    12. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    13. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    14. Malard, Julien J & Adamowski, Jan Franklin & Rojas Díaz, Marcela & Nassar, Jessica Bou & Anandaraja, Nallusamy & Tuy, Héctor & Arévalo-Rodriguez, Luís Andrés & Melgar-Quiñonez, Hugo Ramiro, 2020. "Agroecological food web modelling to evaluate and design organic and conventional agricultural systems," Ecological Modelling, Elsevier, vol. 421(C).
    15. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    16. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    17. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    18. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    19. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    20. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7536-:d:589294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.