IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7371-d586521.html
   My bibliography  Save this article

Sustainability Analysis of Fish Feed Derived from Aquatic Plant and Insect

Author

Listed:
  • Shashank Goyal

    (EurA AG, 73479 Ellwangen, Germany)

  • Denise Ott

    (EurA AG, 73479 Ellwangen, Germany)

  • Jens Liebscher

    (Bio.S Biogas GmbH Beiersdorf, 04668 Grimma, Germany)

  • Dennis Höfling

    (Bio.S Biogas GmbH Beiersdorf, 04668 Grimma, Germany)

  • Ariane Müller

    (Institut für Zoologie, TU Dresden, 01069 Dresden, Germany)

  • Jens Dautz

    (Terra Urbana GmbH Zossen, 15806 Zossen, Germany)

  • Herwig O. Gutzeit

    (Institut für Zoologie, TU Dresden, 01069 Dresden, Germany)

  • Dirk Schmidt

    (EurA AG, 73479 Ellwangen, Germany)

  • Rosmarie Reuss

    (EurA AG, 73479 Ellwangen, Germany)

Abstract

Fish and meat production and processing will grow drastically in the coming decades. In aquacultural systems, insects are gaining interest as feed to provide a sustainable alternative to the fishmeal paradox, whose production leads to high consumption of resources and negative environmental impacts. Within the scope of this study, the production of fish feed from Hermetia illucens larvae and Lemna minor in an inline recirculating aquaponics model for urban sites was developed and optimized, which efficiently combines waste and environmental service concepts in one production system. At the same time, the value chain produces high-quality, market-accessible raw materials for the fish feed industry. All investigations were accompanied by a comparative Life Cycle Assessment (LCA) to measure and compare ecological effects to finally result in sustainable alternatives. The results achieved in this research show that fish feed based on Hermetia illucens and Lemna minor can have the potential to be ecologically competitive or more sustainable than standard feed. It should be noted that the comparison here represents the results of the project on a pilot scale. Various optimization potentials were shown, which are essential for the large-scale implementation of the breeding of both species as well as their processing up to the fish feed pellets.

Suggested Citation

  • Shashank Goyal & Denise Ott & Jens Liebscher & Dennis Höfling & Ariane Müller & Jens Dautz & Herwig O. Gutzeit & Dirk Schmidt & Rosmarie Reuss, 2021. "Sustainability Analysis of Fish Feed Derived from Aquatic Plant and Insect," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7371-:d:586521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lozano, Sebastián & Iribarren, Diego & Moreira, María Teresa & Feijoo, Gumersindo, 2010. "Environmental impact efficiency in mussel cultivation," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1269-1277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denise Ott & Shashank Goyal & Rosmarie Reuss & Herwig O. Gutzeit & Jens Liebscher & Jens Dautz & Margo Degieter & Hans Steur & Emanuele Zannini, 2023. "LCA as decision support tool in the food and feed sector: evidence from R&D case studies," Environment Systems and Decisions, Springer, vol. 43(1), pages 129-141, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Yang & Hong Fang, 2020. "Research on Green Productivity of Chinese Real Estate Companies—Based on SBM-DEA and TOBIT Models," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    2. Theodorou, J.A. & Tzovenis, I., 2017. "Managing the Risks of the Greek Crisis in Aquaculture: A SWOT Analysis of the Mediterranean Mussel Farming," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 0(Issue 2), July.
    3. Javier García-Gudiño & Elena Angón & Isabel Blanco-Penedo & Florence Garcia-Launay & José Perea, 2022. "Targeting Environmental and Technical Parameters through Eco-Efficiency Criteria for Iberian Pig Farms in the dehesa Ecosystem," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    4. Iribarren, Diego & Moreira, Maria Teresa & Feijoo, Gumersindo, 2010. "Life Cycle Assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain)," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 106-117.
    5. Heidari, Mohammad Davoud & Turner, Ian & Ardestani-Jaafari, Amir & Pelletier, Nathan, 2021. "Operations research for environmental assessment of crop-livestock production systems," Agricultural Systems, Elsevier, vol. 193(C).
    6. Diego Iribarren & Ian Vázquez-Rowe, 2013. "Is Labor a Suitable Input in LCA + DEA Studies? Insights on the Combined Use of Economic, Environmental and Social Parameters," Social Sciences, MDPI, vol. 2(3), pages 1-17, July.
    7. Ma-Lin Song & Ron Fisher & Jian-Lin Wang & Lian-Biao Cui, 2018. "Environmental performance evaluation with big data: theories and methods," Annals of Operations Research, Springer, vol. 270(1), pages 459-472, November.
    8. Yang, Linsheng & Zhou, Yifan & Meng, Bo & Li, Haojie & Zhan, Jian & Xiong, Huaye & Zhao, Huanyu & Cong, Wenfeng & Wang, Xiaozhong & Zhang, Wushuai & Lakshmanan, Prakash & Deng, Yan & Shi, Xiaojun & Ch, 2022. "Reconciling productivity, profitability and sustainability of small-holder sugarcane farms: A combined life cycle and data envelopment analysis," Agricultural Systems, Elsevier, vol. 199(C).
    9. Iribarren, Diego & Vázquez-Rowe, Ian & Rugani, Benedetto & Benetto, Enrico, 2014. "On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy," Energy, Elsevier, vol. 67(C), pages 527-537.
    10. Song, Malin & Zheng, Wanping & Wang, Shuhong, 2017. "Measuring green technology progress in large-scale thermoelectric enterprises based on Malmquist–Luenberger life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 261-269.
    11. Elena Tamburini & Elisa Anna Fano & Giuseppe Castaldelli & Edoardo Turolla, 2019. "Life Cycle Assessment of Oyster Farming in the Po Delta, Northern Italy," Resources, MDPI, vol. 8(4), pages 1-17, October.
    12. Iribarren, Diego & Martín-Gamboa, Mario & Dufour, Javier, 2013. "Environmental benchmarking of wind farms according to their operational performance," Energy, Elsevier, vol. 61(C), pages 589-597.
    13. Zhang, Junfeng & Fang, Hong & Wang, Hongxia & Jia, Mingshun & Wu, Junjie & Fang, Siran, 2017. "Energy efficiency of airlines and its influencing factors: A comparison between China and the United States," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 1-8.
    14. Jianling Fan & Cuiying Liu & Jianan Xie & Lu Han & Chuanhong Zhang & Dengwei Guo & Junzhao Niu & Hao Jin & Brian G. McConkey, 2022. "Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    15. Martín-Gamboa, Mario & Iribarren, Diego & García-Gusano, Diego & Dufour, Javier, 2019. "Enhanced prioritisation of prospective scenarios for power generation in Spain: How and which one?," Energy, Elsevier, vol. 169(C), pages 369-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7371-:d:586521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.