IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7198-d583192.html
   My bibliography  Save this article

Estimation of Energy Recovery Potential from Primary Residues of Four Municipal Wastewater Treatment Plants

Author

Listed:
  • Eleni P. Tsiakiri

    (Department of Food Science and Technology, School of Geotechnical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece)

  • Aikaterini Mpougali

    (Department of Food Science and Technology, School of Geotechnical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece)

  • Ioannis Lemonidis

    (Department of Food Science and Technology, School of Geotechnical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece)

  • Christos A. Tzenos

    (Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece)

  • Sotirios D. Kalamaras

    (Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece)

  • Thomas A. Kotsopoulos

    (Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece)

  • Petros Samaras

    (Department of Food Science and Technology, School of Geotechnical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece)

Abstract

Wastewater treatment plants have been traditionally developed for the aerobic degradation of effluent organic matter, and are associated with high energy consumption. The adoption of sustainable development targets favors the utilization of every available energy source, and the current work aims at the identification of biomethane potential from non-conventional sources derived from municipal wastewater treatment processes. Byproducts derived from the primary treatment process stage were collected from four sewage treatment plants in Greece with great variation in design capacity and servicing areas with wide human activities, affecting the quality of the influents and the corresponding primary wastes. The samples were characterized for the determination of their solids and fats content, as well as the concentration of leached organic matter and nutrients, and were subjected to anaerobic digestion treatment for the measurement of their biomethane production potential according to standardized procedures. All samples exhibited potential for biogas utilization, with screenings collected from a treatment plant receiving wastewater from an area with combined rural and agro-industrial activities presenting the highest potential. Nevertheless, these samples had a methanogens doubling time of around 1.3 days, while screenings from a high-capacity unit proved to have a methanogens doubling time of less than 1 day. On the other hand, floatings from grit chambers presented the smallest potential for energy utilization. Nevertheless, these wastes can be utilized for energy production, potentially in secondary sludge co-digestion units, converting a treatment plant from an energy demanding to a zero energy or even a power production process.

Suggested Citation

  • Eleni P. Tsiakiri & Aikaterini Mpougali & Ioannis Lemonidis & Christos A. Tzenos & Sotirios D. Kalamaras & Thomas A. Kotsopoulos & Petros Samaras, 2021. "Estimation of Energy Recovery Potential from Primary Residues of Four Municipal Wastewater Treatment Plants," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7198-:d:583192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    2. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Jesús De la Torre Bayo & Montserrat Zamorano Toro & Luz Marina Ruiz & Juan Carlos Torres Rojo & Jaime Martín Pascual, 2023. "Analysing the Sustainability of the Production of Solid Recovered Fuel from Screening Waste," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    2. Christos A. Tzenos & Sotirios D. Kalamaras & Eleni-Anna Economou & George Em. Romanos & Charitomeni M. Veziri & Anastasios Mitsopoulos & Georgios C. Menexes & Themistoklis Sfetsas & Thomas A. Kotsopou, 2023. "The Multifunctional Effect of Porous Additives on the Alleviation of Ammonia and Sulfate Co-Inhibition in Anaerobic Digestion," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    3. Ioannis Lemonidis & Dimitra C. Banti & Christos A. Tzenos & Sotirios D. Kalamaras & Thomas A. Kotsopoulos & Petros Samaras, 2022. "Energy Valorization of Fine Screenings from a Municipal Wastewater Treatment Plant," Energies, MDPI, vol. 15(21), pages 1-15, November.
    4. Francisco M. Baena-Moreno & Isabel Malico & Isabel Paula Marques, 2021. "Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    5. Juan Jesús De la Torre Bayo & Jaime Martín Pascual & Juan Carlos Torres Rojo & Montserrat Zamorano Toro, 2022. "Waste to Energy from Municipal Wastewater Treatment Plants: A Science Mapping," Sustainability, MDPI, vol. 14(24), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    2. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    3. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    5. Nikolaos Tsalas & Spyridon K. Golfinopoulos & Stylianos Samios & Georgios Katsouras & Konstantinos Peroulis, 2024. "Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview," Energies, MDPI, vol. 17(12), pages 1-43, June.
    6. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    7. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    8. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    9. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    10. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    11. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    12. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Moazeni, Faegheh & Khazaei, Javad, 2021. "Co-optimization of wastewater treatment plants interconnected with smart grids," Applied Energy, Elsevier, vol. 298(C).
    14. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
    15. Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
    16. Zaborowska, Ewa & Czerwionka, Krzysztof & Mąkinia, Jacek, 2021. "Integrated plant-wide modelling for evaluation of the energy balance and greenhouse gas footprint in large wastewater treatment plants," Applied Energy, Elsevier, vol. 282(PA).
    17. Aleksandra Szaja & Agnieszka Montusiewicz & Magdalena Lebiocka, 2021. "The Energetic Aspect of Organic Wastes Addition on Sewage Sludge Anaerobic Digestion: A Laboratory Investigation," Energies, MDPI, vol. 14(19), pages 1-12, September.
    18. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    19. Longo, S. & Mauricio-Iglesias, M. & Soares, A. & Campo, P. & Fatone, F. & Eusebi, A.L. & Akkersdijk, E. & Stefani, L. & Hospido, A., 2019. "ENERWATER – A standard method for assessing and improving the energy efficiency of wastewater treatment plants," Applied Energy, Elsevier, vol. 242(C), pages 897-910.
    20. Luo, Li & Dzakpasu, Mawuli & Yang, Baichuan & Zhang, Wushou & Yang, Yahong & Wang, Xiaochang C., 2019. "A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment," Applied Energy, Elsevier, vol. 236(C), pages 253-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7198-:d:583192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.