IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7018-d579736.html
   My bibliography  Save this article

A Driving Behavior Distribution Fitting Method Based on Two-Stage Hybrid User Classification

Author

Listed:
  • Han Su

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China)

  • Qian Zhang

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China)

  • Wanying Wang

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China)

  • Xiaoan Tang

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China)

Abstract

Determining the distribution fitting of traditional private vehicle user driving behavior is an effective way to understand the differences between different users and provides valuable information on user travel demands. The classification of users is significant to product improvement, precision marketing, and driving recommendations. This study proposed a method which includes four aspects: (1) data collection; (2) data preprocessing; (3) data analysis—a two-stage hybrid user classification, and (4) distribution fitting method. A two-stage hybrid user classification method is used to cluster traditional vehicle users. First, the first-stage classification of the classification method extracts the daily typical time–mileage-series travel patterns (TMTP) to obtain user driving time characteristics. This first-stage classification also extracts the mean and standard deviation of the daily vehicle mileage traveled (DVMT) to express user driving demands. Next, users are divided by K-means based on the driving time characteristics and driving demands from the first stage. Finally, a three-parameter log-normal distribution is used to fit the DVMT of different user types. Comparison with traditional clustering based on the mean and standard deviation and the proportion of each vehicle’s time series in the TMTP types, this study reveals that the new methods provide significant advantages in analyzing driving behavior and high reference value for enterprises making electric vehicle driving range recommendations, car market segmentation, and policy making decisions.

Suggested Citation

  • Han Su & Qian Zhang & Wanying Wang & Xiaoan Tang, 2021. "A Driving Behavior Distribution Fitting Method Based on Two-Stage Hybrid User Classification," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7018-:d:579736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chia-Yu Hsu & Sirirat Sae Lim & Chin-Sheng Yang, 2017. "Data mining for enhanced driving effectiveness: an eco-driving behaviour analysis model for better driving decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 55(23), pages 7096-7109, December.
    2. Bansal, Prateek & Kockelman, Kara M. & Schievelbein, Will & Schauer-West, Scott, 2018. "Indian vehicle ownership and travel behavior: A case study of Bengaluru, Delhi and Kolkata," Research in Transportation Economics, Elsevier, vol. 71(C), pages 2-8.
    3. Jiahang He & Toshiyuki Yamamoto & Tomio Miwa & Takayuki Morikawa, 2020. "Hazard Duration Model with Panel Data for Daily Car Travel Distance: A Toyota City Case Study," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    4. Greene, David L., 1985. "Estimating daily vehicle usage distributions and the implications for limited-range vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 347-358, August.
    5. Jensen, Anders Fjendbo & Mabit, Stefan Lindhard, 2017. "The use of electric vehicles: A case study on adding an electric car to a household," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 89-99.
    6. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    7. Yang, Jun & Liu, Antung A. & Qin, Ping & Linn, Joshua, 2020. "The effect of vehicle ownership restrictions on travel behavior: Evidence from the Beijing license plate lottery," Journal of Environmental Economics and Management, Elsevier, vol. 99(C).
    8. Plötz, Patrick & Jakobsson, Niklas & Sprei, Frances, 2017. "On the distribution of individual daily driving distances," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 213-227.
    9. Yuhui Zhao & Xinyan Zhu & Wei Guo & Bing She & Han Yue & Ming Li, 2019. "Exploring the Weekly Travel Patterns of Private Vehicles Using Automatic Vehicle Identification Data: A Case Study of Wuhan, China," Sustainability, MDPI, vol. 11(21), pages 1-17, November.
    10. Wang, Yi & Zhang, Ning & Zhuo, Zhenyu & Kang, Chongqing & Kirschen, Daniel, 2018. "Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch," Applied Energy, Elsevier, vol. 210(C), pages 1141-1150.
    11. Zhang, Xudong & Zou, Yuan & Fan, Jie & Guo, Hongwei, 2019. "Usage pattern analysis of Beijing private electric vehicles based on real-world data," Energy, Elsevier, vol. 167(C), pages 1074-1085.
    12. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    13. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuefang Li & Chenhui Liu & Jianmin Jia, 2019. "Ownership and Usage Analysis of Alternative Fuel Vehicles in the United States with the 2017 National Household Travel Survey Data," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    2. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    3. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    4. Jiao, Feixiang & Ji, Chengda & Zou, Yuan & Zhang, Xudong, 2021. "Tri-stage optimal dispatch for a microgrid in the presence of uncertainties introduced by EVs and PV," Applied Energy, Elsevier, vol. 304(C).
    5. Jiahang He & Toshiyuki Yamamoto, 2020. "Characterization of Daily Travel Distance of a University Car Fleet for the Purpose of Replacing Conventional Vehicles with Electric Vehicles," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    6. Shu, Tony & Papageorgiou, Dimitri J. & Harper, Michael R. & Rajagopalan, Srinivasan & Rudnick, Iván & Botterud, Audun, 2023. "From coal to variable renewables: Impact of flexible electric vehicle charging on the future Indian electricity sector," Energy, Elsevier, vol. 269(C).
    7. Suchi Kapoor Malhotra & Howard White & Nina Ashley O. Dela Cruz & Ashrita Saran & John Eyers & Denny John & Ella Beveridge & Nina Blöndal, 2021. "Studies of the effectiveness of transport sector interventions in low‐ and middle‐income countries: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    8. Singh, Shivendu Shekhar & Sarkar, Basudatta, 2022. "Transport accessibility and affordability as the determinant of non-motorized commuting in rural India," Transport Policy, Elsevier, vol. 118(C), pages 101-111.
    9. Jiahang He & Toshiyuki Yamamoto & Tomio Miwa & Takayuki Morikawa, 2020. "Hazard Duration Model with Panel Data for Daily Car Travel Distance: A Toyota City Case Study," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    10. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    11. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    12. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    13. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    14. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    15. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    16. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    17. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    18. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    19. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    20. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7018-:d:579736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.