IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6898-d577406.html
   My bibliography  Save this article

Examining Land Use/Land Cover Change and Its Prediction Based on a Multilayer Perceptron Markov Approach in the Luki Biosphere Reserve, Democratic Republic of Congo

Author

Listed:
  • Opelele Omeno Michel

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
    Department of Natural Resources Management, Faculty of Agricultural Sciences, University of Kinshasa, 117 Kinshasa, Democratic Republic of the Congo)

  • Yu Ying

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China)

  • Fan Wenyi

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China)

  • Chen Chen

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China)

  • Kachaka Sudi Kaiko

    (Department of Natural Resources Management, Faculty of Agricultural Sciences, University of Kinshasa, 117 Kinshasa, Democratic Republic of the Congo)

Abstract

Villages within the Luki Biosphere Reserve and the surrounding cities have undergone rapid demographic growth and urbanization that have impacted the reserve’s natural landscape. However, no study has focused on the spatiotemporal analysis of its land use/land cover. The present research aims at providing a comprehensive analysis of land use/land cover change in the Luki Biosphere Reserve from the year 1987 to 2020, and to predict its future change for the year 2038. Landsat images were classified in order to provide land use/land cover maps for the years 1987, 2002, 2017 and 2020. Based on these maps, change detection, gradient direction, and landscape metric analyses were performed. In addition, land use/land cover change prediction was carried out using the Multilayer Perceptron Markov model. The results revealed significant land use/land cover changes in the Luki Biosphere Reserve during the study period. Indeed, tremendous changes in the primary forest, which lost around 17.8% of its total area, were noted. Other classes, notably savannah, secondary forest, built-up area, fallow land and fields had gained 79.35, 1150.36, 67.63, 3852.12 hectares, respectively. Based on the landscape metric analysis, it was revealed that built-up areas and fallow land and fields experienced an aggregation trend, while other classes showed disaggregation and fragmentation trends. Analysis further revealed that village expansion has significantly affected the process of land use/land cover change in the Luki Biosphere Reserve. However, the prediction results revealed that the primary forest will continue to increase while built-up area, fallow land and fields will follow a trend similar to a previous one. As for secondary forest and savannah, the forecast revealed a decrease of the extent during the period extending from 2020 to 2038. The present findings will benefit the decision makers, particularly in the sustainable natural resources management of the Luki Biosphere Reserve.

Suggested Citation

  • Opelele Omeno Michel & Yu Ying & Fan Wenyi & Chen Chen & Kachaka Sudi Kaiko, 2021. "Examining Land Use/Land Cover Change and Its Prediction Based on a Multilayer Perceptron Markov Approach in the Luki Biosphere Reserve, Democratic Republic of Congo," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6898-:d:577406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert G. Cromley & Dean M. Hanink, 1999. "Coupling land use allocation models with raster GIS," Journal of Geographical Systems, Springer, vol. 1(2), pages 137-153, July.
    2. Huiran Han & Chengfeng Yang & Jinping Song, 2015. "Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    3. Xu QuanLi & Yang Kun & Wang GuiLin & Yang YuLian, 2015. "Agent-based modeling and simulations of land-use and land-cover change according to ant colony optimization: a case study of the Erhai Lake Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 95-118, January.
    4. Ali, Ghaffar & Pumijumnong, Nathsuda & Cui, Shenghui, 2018. "Valuation and validation of carbon sources and sinks through land cover/use change analysis: The case of Bangkok metropolitan area," Land Use Policy, Elsevier, vol. 70(C), pages 471-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    2. Yuzhi Liu & Wenping Cao & Fuyuan Wang, 2024. "Spatiotemporal Evolution of Land Cover and Landscape Ecological Risk in Wuyishan National Park and Surrounding Areas," Land, MDPI, vol. 13(5), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhanage Vinayak & Han Soo Lee & Shirishkumar Gedem, 2021. "Prediction of Land Use and Land Cover Changes in Mumbai City, India, Using Remote Sensing Data and a Multilayer Perceptron Neural Network-Based Markov Chain Model," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    2. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    3. Bingkui Qiu & Shasha Lu & Min Zhou & Lu Zhang & Yu Deng & Ci Song & Zuo Zhang, 2015. "A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    4. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    5. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    6. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    7. Shaikh Shamim Hasan & Xiangzheng Deng & Zhihui Li & Dongdong Chen, 2017. "Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    8. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    9. Hashem Dadashpoor & Hossein Panahi, 2021. "Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13628-13649, September.
    10. Sarah Hasan & Wenzhong Shi & Xiaolin Zhu & Sawaid Abbas & Hafiz Usman Ahmed Khan, 2020. "Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data," Sustainability, MDPI, vol. 12(11), pages 1-24, May.
    11. Wei Wang & Xin Luo & Chongmei Zhang & Jiahao Song & Dingde Xu, 2021. "Can Land Transfer Alleviate the Poverty of the Elderly? Evidence from Rural China," IJERPH, MDPI, vol. 18(21), pages 1-15, October.
    12. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    13. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    14. Vitus Tankpa & Li Wang & Alfred Awotwi & Leelamber Singh & Samit Thapa & Raphael Ane Atanga & Xiaomeng Guo, 2021. "Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7883-7912, May.
    15. Liping Zhang & Shiwen Zhang & Yajie Huang & Meng Cao & Yuanfang Huang & Hongyan Zhang, 2016. "Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model," IJERPH, MDPI, vol. 13(4), pages 1-20, March.
    16. Yipeng Zhang & Yunbing Gao & Bingbo Gao & Yuchun Pan & Mingyang Yan, 2015. "An Efficient Graph-based Method for Long-term Land-use Change Statistics," Sustainability, MDPI, vol. 8(1), pages 1-14, December.
    17. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    18. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    19. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    20. Yichen Ding & Yaping Huang & Lairong Xie & Shiwei Lu & Leizhou Zhu & Chunguang Hu & Yidan Chen, 2022. "Spatial Patterns Exploration and Impacts Modelling of Carbon Emissions: Evidence from Three Stages of Metropolitan Areas in the YREB, China," Land, MDPI, vol. 11(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6898-:d:577406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.