IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6326-d567822.html
   My bibliography  Save this article

Spatial Distribution and Land Use of Traditional Villages in Southwest China

Author

Listed:
  • Xiye Zheng

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jiahui Wu

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Hongbing Deng

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract

Traditional villages are the historical and cultural heritage of people around the world. With the increases in urbanization and industrialization, the continuation of traditional villages and the inheritance of historical and cultural heritage are facing risk. Therefore, to grasp the spatial characteristics of them and the human–nature interaction mechanism in Southwest China, we analyzed the distribution pattern of traditional villages using the ArcGIS software. Then, we further analyzed the spatial clustering characteristics, influencing factors and landscape pattern, and put forward relevant protection countermeasures and suggestions. The results revealed that traditional villages in Southwest China were clustered, being mainly distributed in areas with relatively low elevation, gentle slopes, low relative positions, nearby water sources, and convenient transportation. They can be divided into four categories due to obvious differences in influencing factors such as elevation, slope, relative position, distance to the nearest river, population density, etc. The landscape pattern of traditional villages differed among the different clusters, being mainly composed of forests, shrubs, and cultivated land. With the increase in the buffer radius, the landscape pattern of them changed significantly. The results of this study reflect that traditional villages and the natural environment are interdependent, so the protection of traditional villages should carry out measures according to local conditions.

Suggested Citation

  • Xiye Zheng & Jiahui Wu & Hongbing Deng, 2021. "Spatial Distribution and Land Use of Traditional Villages in Southwest China," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6326-:d:567822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Feng & Ye, Yaping & Song, Bowen & Wang, Rusong, 2015. "Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 194-203.
    2. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    3. Xiaodong Xu & Jingping Liu & Ning Xu & Wei Wang & Hui Yang, 2018. "Quantitative Study on the Evolution Trend and Driving Factors of Typical Rural Spatial Morphology in Southern Jiangsu Province, China," Sustainability, MDPI, vol. 10(7), pages 1-20, July.
    4. Hai-fan Wang & Shang-chia Chiou, 2019. "Research on the Sustainable Development of Traditional Dwellings," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinhe Chen & Rui Li, 2024. "Spatial Distribution and Type Division of Traditional Villages in Zhejiang Province," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    2. Anqiang Jia & Xiaoxu Liang & Xuan Wen & Xin Yun & Lijian Ren & Yingxia Yun, 2023. "GIS-Based Analysis of the Spatial Distribution and Influencing Factors of Traditional Villages in Hebei Province, China," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    3. Haoran Su & Yaowu Wang & Zhen Zhang & Wen Dong, 2022. "Characteristics and Influencing Factors of Traditional Village Distribution in China," Land, MDPI, vol. 11(10), pages 1-26, September.
    4. Liu Jin & Zongqi Wang & Xiaohong Chen, 2022. "Spatial Distribution Characteristics and Influencing Factors of Traditional Villages on the Tibetan Plateau in China," IJERPH, MDPI, vol. 19(20), pages 1-19, October.
    5. Yongchun Hao & Zhe Li & Jiade Wu, 2024. "Sustainable Spatial Features of Settlements along the Miao Frontier Wall and Miao Frontier Corridor Analyzed through Machine Learning Clustering," Sustainability, MDPI, vol. 16(20), pages 1-23, October.
    6. Shuxin Mao & Hongbing Deng, 2022. "Regional Ecology Supporting Sustainable Development," Sustainability, MDPI, vol. 14(12), pages 1-5, June.
    7. Xiaogang Feng & Moqing Hu & Sekhar Somenahalli & Xinyuan Bian & Meng Li & Zaihui Zhou & Fengxia Li & Yuan Wang, 2023. "A Study of Spatio-Temporal Differentiation Characteristics and Driving Factors of Shaanxi Province’s Traditional Heritage Villages," Sustainability, MDPI, vol. 15(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zuo & Li, Jiaming & Luo, Xiang & Li, Chongming & Zhang, Lu, 2020. "Urban lake spatial openness and relationship with neighboring land prices: Exploratory geovisual analytics for essential policy insights," Land Use Policy, Elsevier, vol. 92(C).
    2. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    3. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    4. Jianglin Lu & Keqiang Wang & Hongmei Liu, 2022. "Residents’ Selection Behavior of Compensation Schemes for Construction Land Reduction: Empirical Evidence from Questionnaires in Shanghai, China," Land, MDPI, vol. 12(1), pages 1-29, December.
    5. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    6. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    7. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    8. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    9. Wang, Bo & Li, Fan & Feng, Shuyi & Shen, Tong, 2020. "Transfer of development rights, farmland preservation, and economic growth: a case study of Chongqing’s land quotas trading program," Land Use Policy, Elsevier, vol. 95(C).
    10. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    11. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    12. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    13. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    14. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    15. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    16. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    17. Antonín Vaishar & Milada Šťastná, 2019. "Sustainable Development of a Peripheral Mountain Region on the State Border: Case Study of Moravské Kopanice Microregion (Moravia)," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    18. Li, Jintao & Dong, Haoran & Li, Shaoxing, 2024. "Economic development and optimal allocation of land use in ecological emigration area in China," Land Use Policy, Elsevier, vol. 142(C).
    19. Pai Wang & Mengna Qi & Yajia Liang & Xuebing Ling & Yan Song, 2019. "Examining the Relationship between Environmentally Friendly Land Use and Rural Revitalization Using a Coupling Analysis: A Case Study of Hainan Province, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    20. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6326-:d:567822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.