IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6291-d567537.html
   My bibliography  Save this article

Automation of the Road Gate Operations Process at the Container Terminal—A Case Study of DCT Gdańsk SA

Author

Listed:
  • Karol Moszyk

    (Doctoral Studies-Implementation Doctorate, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
    Operations Department, PSA Group, DCT Gdańsk SA, Deepwater Container Terminal Gdańsk, Kontenerowa Str. 7, 80-601 Gdańsk, Poland)

  • Mariusz Deja

    (Department of Manufacturing and Production Engineering, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland)

  • Michal Dobrzynski

    (Department of Manufacturing and Production Engineering, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland)

Abstract

The future increased terminal capacity will result in more container movement through the road complex and rail siding, which are one of the most critical areas (potential bottlenecks) in the container terminal. Truck turnaround time is one of the major factors that customers take into account while deciding how many container volumes they will handle through the container terminal. To enable to optimize increased traffic with future container terminal development, as well as increase gates throughput, and as a consequence, encourage more volume and increase customer satisfaction, Deepwater Container Terminal Gdańsk SA plans to reorganize and automatize the gate operation process. Gate automation includes supply, installation, commissioning, implementation, and maintenance of software and hardware that would allow automatizing the handling of trucks at container terminal gates by using OCR (optical camera recognition) technology, LPR (license plate recognition) systems and self-service kiosk for truck drivers.

Suggested Citation

  • Karol Moszyk & Mariusz Deja & Michal Dobrzynski, 2021. "Automation of the Road Gate Operations Process at the Container Terminal—A Case Study of DCT Gdańsk SA," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6291-:d:567537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bowei Xu & Xiaoyan Liu & Yongsheng Yang & Junjun Li & Octavian Postolache, 2021. "Optimization for a Multi-Constraint Truck Appointment System Considering Morning and Evening Peak Congestion," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    2. Wenrui Qu & Tao Tao & Bo Xie & Yi Qi, 2021. "A State-Dependent Approximation Method for Estimating Truck Queue Length at Marine Terminals," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    3. Maguire, A. & Ivey, S. & Golias, M.M & Lipinski, M.E, 2010. "Relieving Congestion at Intermodal Marine Container Terminals: Review of Tactical/Operational Strategies," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207280, Transportation Research Forum.
    4. Neven Grubisic & Tomislav Krljan & Livia Maglić & Siniša Vilke, 2020. "The Microsimulation Model for Assessing the Impact of Inbound Traffic Flows for Container Terminals Located near City Centers," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    5. Fan, Lei & Wilson, William W. & Dahl, Bruce, 2012. "Congestion, port expansion and spatial competition for US container imports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1121-1136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krüger, Stephan & Marius Schulze, Marius & Jahn, Carlos, 2022. "Potential of container terminal operations for RoRo terminals," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 591-613, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    3. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    4. Ryuichi Shibasaki & Takayuki Iijima & Taiji Kawakami & Takashi Kadono & Tatsuyuki Shishido, 2017. "Network assignment model of integrating maritime and hinterland container shipping: application to Central America," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 234-273, June.
    5. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    6. Peter Shobayo & Edwin van Hassel, 2019. "Container barge congestion and handling in large seaports: a theoretical agent-based modeling approach," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-26, December.
    7. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
    9. María D. Gracia & Rosa G. González-Ramírez & Julio Mar-Ortiz, 2017. "The impact of lanes segmentation and booking levels on a container terminal gate congestion," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 403-432, December.
    10. Feng, Hongxiang & Grifoll, Manel & Zheng, Pengjun, 2019. "From a feeder port to a hub port: The evolution pathways, dynamics and perspectives of Ningbo-Zhoushan port (China)," Transport Policy, Elsevier, vol. 76(C), pages 21-35.
    11. Talley, Wayne K., 2014. "Maritime transport chains: carrier, port and shipper choice effects," International Journal of Production Economics, Elsevier, vol. 151(C), pages 174-179.
    12. Ruiz-Aguilar, J.J. & Turias, I.J. & Jiménez-Come, M.J., 2014. "Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 1-13.
    13. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    14. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    15. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2014. "Game-theoretical models for competition analysis in a new emerging liner container shipping market," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 201-227.
    16. Smid, Martijn & Dekker, Sander & Wiegmans, Bart, 2016. "Modeling the cost sensitivity of intermodal inland waterway terminals: A scenario based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 112-122.
    17. Li, Xinyan & Xie, Chi & Bao, Zhaoyao, 2022. "A multimodal multicommodity network equilibrium model with service capacity and bottleneck congestion for China-Europe containerized freight flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    18. Wenrui Qu & Tao Tao & Bo Xie & Yi Qi, 2021. "A State-Dependent Approximation Method for Estimating Truck Queue Length at Marine Terminals," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    19. Jacobsson, Stefan & Arnäs, Per Olof & Stefansson, Gunnar, 2018. "Differentiation of access management services at seaport terminals: Facilitating potential improvements for road hauliers," Journal of Transport Geography, Elsevier, vol. 70(C), pages 256-264.
    20. Shi, Jia & Jiao, Yuquan & Chen, Jihong & Ye, Jun & Gong, Jianwei, 2023. "A study on the evolution of competition pattern of inland container ports along the Yangtze River in China," Journal of Transport Geography, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6291-:d:567537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.