IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5512-d554870.html
   My bibliography  Save this article

Carpooling as an Immediate Strategy to Post-Lockdown Mobility: A Case Study in University Campuses

Author

Listed:
  • Ricardo Tomás

    (University of Aveiro, Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Paulo Fernandes

    (University of Aveiro, Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Joaquim Macedo

    (University of Aveiro, Aveiro Research Center for Risks and Sustainability in Construction (RISCO), Department of Civil Engineering, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Margarida Cabrita Coelho

    (University of Aveiro, Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

Abstract

Carpooling is a mobility concept that has been showing promising results in reducing single occupancy use of private cars, which prompted many institutions, namely universities, to implement carpooling platforms to improve their networks sustainability. Nowadays, currently under a pandemic crisis, public transportation must be used with limitations regarding the number of occupants to prevent the spread of the virus and commuters are turning even more to private cars to perform their daily trips. Carpooling under a set of precaution rules is a potential solution to help commuters perform their daily trips while respecting COVID-19 safety recommendations. This research aimed to develop an analysis of the road traffic and emission impacts of implementing carpooling, with social distancing measures, in three university campus networks through microscopic traffic simulation modeling and microscopic vehicular exhaust emissions estimation. Results indicate that employing carpooling for groups of up to three people to safely commute from their residence area to the university campus has the potential to significantly reduce pollutant emissions (reductions of 5% and 7% in carbon dioxide and nitrogen oxides can be obtained, respectively) within the network while significantly improving road traffic performance (average speed increased by 7% and travel time reduced by 8%).

Suggested Citation

  • Ricardo Tomás & Paulo Fernandes & Joaquim Macedo & Margarida Cabrita Coelho, 2021. "Carpooling as an Immediate Strategy to Post-Lockdown Mobility: A Case Study in University Campuses," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5512-:d:554870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monchambert, Guillaume, 2020. "Why do (or don’t) people carpool for long distance trips? A discrete choice experiment in France," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 911-931.
    2. José Alberto Molina & J. Ignacio Giménez-Nadal & Jorge Velilla, 2020. "Sustainable Commuting: Results from a Social Approach and International Evidence on Carpooling," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    3. Fernandes, P. & Tomás, R. & Ferreira, E. & Bahmankhah, B. & Coelho, M.C., 2021. "Driving aggressiveness in hybrid electric vehicles: Assessing the impact of driving volatility on emission rates," Applied Energy, Elsevier, vol. 284(C).
    4. Gheorghiu, Alexandra & Delhomme, Patricia, 2018. "For which types of trips do French drivers carpool? Motivations underlying carpooling for different types of trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 460-475.
    5. Lars E. Olsson & Raphaela Maier & Margareta Friman, 2019. "Why Do They Ride with Others? Meta-Analysis of Factors Influencing Travelers to Carpool," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    6. Zacharof, Nikiforos & Tietge, Uwe & Franco, Vicente & Mock, Peter, 2016. "Type approval and real-world CO2 and NOx emissions from EU light commercial vehicles," Energy Policy, Elsevier, vol. 97(C), pages 540-548.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharon Shoshany-Tavory & Tamar Trop & Yoram Shiftan, 2024. "A cross-cultural study of nonprofit self-organized ridesharing," Transportation, Springer, vol. 51(2), pages 717-757, April.
    2. Anne Aguiléra & Eléonore Pigalle, 2021. "The Future and Sustainability of Carpooling Practices. An Identification of Research Challenges," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    3. José Gerardo Carrillo-González & Guillermo López-Maldonado & Juan Lopez-Sauceda & Francisco Perez-Martinez, 2023. "Method for Selecting the Vehicles That Can Enter a Street Network to Maintain the Speed on Links above a Speed Threshold," Sustainability, MDPI, vol. 15(13), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Aguiléra & Eléonore Pigalle, 2021. "The Future and Sustainability of Carpooling Practices. An Identification of Research Challenges," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    2. Lambros Mitropoulos & Annie Kortsari & Georgia Ayfantopoulou, 2021. "Factors Affecting Drivers to Participate in a Carpooling to Public Transport Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    3. María del Carmen Rey-Merchán & Antonio López-Arquillos & Manuela Pires Rosa, 2022. "Carpooling Systems for Commuting among Teachers: An Expert Panel Analysis of Their Barriers and Incentives," IJERPH, MDPI, vol. 19(14), pages 1-12, July.
    4. Leonidas G. Anthopoulos & Dimitrios N. Tzimos, 2021. "Carpooling Platforms as Smart City Projects: A Bibliometric Analysis and Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-29, September.
    5. Tzu-Ying Chen & Rong-Chang Jou & Yi-Chang Chiu, 2021. "Using the Multilevel Random Effect Model to Analyze the Behavior of Carpool Users in Different Cities," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    6. Margareta Friman & Katrin Lättman & Lars E. Olsson, 2020. "Carpoolers’ Perceived Accessibility of Carpooling," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    7. Saxena, Aditya & Gupta, Vallary, 2023. "Carpooling: Who is closest to adopting it? An investigation into the potential car-poolers among private vehicle users: A case of a developing country, India," Transport Policy, Elsevier, vol. 135(C), pages 11-20.
    8. José Alberto Molina & J. Ignacio Giménez-Nadal & Jorge Velilla, 2020. "Sustainable Commuting: Results from a Social Approach and International Evidence on Carpooling," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    9. Anfeng Xu & Jiming Chen & Zihui Liu, 2021. "Exploring the Effects of Carpooling on Travelers’ Behavior during the COVID-19 Pandemic: A Case Study of Metropolitan City," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    10. Lei Wang & Wenxiang Li & Jinxian Weng & Dong Zhang & Wanjing Ma, 2023. "Do low-carbon rewards incentivize people to ridesplitting? Evidence from structural analysis," Transportation, Springer, vol. 50(5), pages 2077-2109, October.
    11. Julie Bulteau & Thierry Feuillet & Sophie Dantan & Souhir Abbes, 2023. "Encouraging carpooling for commuting in the Paris area (France): which incentives and for whom?," Transportation, Springer, vol. 50(1), pages 43-62, February.
    12. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    13. Dianzhuo Zhu, 2022. "Ridesharing: Its potential, challenges, and future in France," Working Papers hal-03994900, HAL.
    14. Rupérez Calavera, Germán & Molina, Jose Alberto, 2022. "PIB per cápita y emisiones de gases de efecto invernadero en Europa," MPRA Paper 113512, University Library of Munich, Germany.
    15. Eva Malichová & Ghadir Pourhashem & Tatiana Kováčiková & Martin Hudák, 2020. "Users’ Perception of Value of Travel Time and Value of Ridesharing Impacts on Europeans’ Ridesharing Participation Intention: A Case Study Based on MoTiV European-Wide Mobility and Behavioral Pattern ," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    16. Meng, Dongli & Song, Guohua & Huang, Jianchang & Lu, Hongyu & Wu, Yizheng & Yu, Lei, 2024. "Car-following model considering jerk-constrained acceleration stochastic process for emission estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    17. Dawei Li & Yuchen Song & Dongjie Liu & Qi Cao & Junlan Chen, 2023. "How carpool drivers choose their passengers in Nanjing, China: effects of facial attractiveness and credit," Transportation, Springer, vol. 50(3), pages 929-958, June.
    18. Lambros Mitropoulos & Annie Kortsari & Emy Apostolopoulou & Georgia Ayfantopoulou & Alexandros Deloukas, 2023. "Multimodal Traveling with Rail and Ride-Sharing: Lessons Learned during Planning and Demonstrating a Pilot Study," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    19. Echeverría, Lucía & Giménez-Nadal, J. Ignacio & Alberto Molina, José, 2022. "Who uses green mobility? Exploring profiles in developed countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 247-265.
    20. Gutierrez-Lythgoe, Antonio, 2023. "Movilidad urbana sostenible: Predicción de demanda con Inteligencia Artificial [Sustainable Urban Mobility: Demand Prediction with Artificial Intelligence]," MPRA Paper 117103, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5512-:d:554870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.