IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3923-d356528.html
   My bibliography  Save this article

Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas

Author

Listed:
  • Yaxian Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100001, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100001, China)

  • Jiangwen Fan

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100001, China)

  • Suizi Wang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100001, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100001, China)

Abstract

The implementation of ecological restoration programs is intensively changing the original ecological carrying capacity and the status of ecological security. To evaluate the spatiotemporal variation of ecological carrying capacity and ecological security in China’s eco-engineering areas, an indicator system of ecological carrying capacity and ecological security should be developed. This study developed an evaluation indicator system that contains 29 indicators. The indicators were generated by long-time series and multi-source data. The indicator system presents the relationship between ecological carrying capacity and ecological security and reflects the dynamic change of them in eco-engineering areas. We selected the Three-River Headwaters Region (TRHR) and implemented the Ecological Conservation and Construction Program (ECCP) as a case study. The results showed the variation of ecological carrying capacity (ECC) and ecological security (ES) in the TRHR before (2000–2004), during early term (2005–2009), and during medium term (2010–2015) implementation of ECCP, and limiting factors of ecological carrying capacity and ecological security in TRHR was analyzed. The results showed that the ECC index and the ES index were significantly increase, indicating that the ECC improved and that the ES state got better in the TRHR after implementing ECCP. The water conservation was the major factors limiting the increase of the ECC. The leading factors limiting the improvement of the ES were educational expenditure before 2010 and turned into proportion of tertiary industry and investments for ecological restoration after 2010. The implementation of the ECCP has improved the ES state but has also resulted in new problems. It provides a scientific reference for future research on the indicator system of ecological carrying capacity and ecological security in eco-engineering areas and also has vital practical significance to guide the sustainable development of ecological restoration programs.

Suggested Citation

  • Yaxian Zhang & Jiangwen Fan & Suizi Wang, 2020. "Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3923-:d:356528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Liu & Chen Zeng & Huatai Cui & Yanhua Song, 2018. "Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    2. Li Gong & Chunling Jin, 2009. "Fuzzy Comprehensive Evaluation for Carrying Capacity of Regional Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2505-2513, September.
    3. David Moreno Mateos & Mary E Power & Francisco A Comín & Roxana Yockteng, 2012. "Structural and Functional Loss in Restored Wetland Ecosystems," Working Papers id:4755, eSocialSciences.
    4. Fan Yang & Quanqin Shao & Xingjian Guo & Yuzhi Tang & Yuzhe Li & Dongliang Wang & Yangchun Wang & Jiangwen Fan, 2018. "Effect of Large Wild Herbivore Populations on the Forage-Livestock Balance in the Source Region of the Yellow River," Sustainability, MDPI, vol. 10(2), pages 1-18, January.
    5. David Moreno-Mateos & Mary E Power & Francisco A Comín & Roxana Yockteng, 2012. "Structural and Functional Loss in Restored Wetland Ecosystems," PLOS Biology, Public Library of Science, vol. 10(1), pages 1-8, January.
    6. Yanlin Tian & Zongming Wang & Dehua Mao & Lin Li & Mingyue Liu & Mingming Jia & Weidong Man & Chunyan Lu, 2019. "Remote Observation in Habitat Suitability Changes for Waterbirds in the West Songnen Plain, China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    7. J. Marc Foggin, 2018. "Environmental Conservation in the Tibetan Plateau Region: Lessons for China’s Belt and Road Initiative in the Mountains of Central Asia," Land, MDPI, vol. 7(2), pages 1-34, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lining Su, 2022. "The Impact of Coordinated Development of Ecological Environment and Technological Innovation on Green Economy: Evidence from China," IJERPH, MDPI, vol. 19(12), pages 1-15, June.
    2. Ke Liu & Xinyue Xie & Qian Zhou, 2021. "Research on the Influencing Factors of Urban Ecological Carrying Capacity Based on a Multiscale Geographic Weighted Regression Model: Evidence from China," Land, MDPI, vol. 10(12), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward B. Barbier, 2016. "The Protective Value of Estuarine and Coastal Ecosystem Services in a Wealth Accounting Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 37-58, May.
    2. Scemama, Pierre & Levrel, Harold, 2019. "Influence of the Organization of Actors in the Ecological Outcomes of Investment in Restoration of Biodiversity," Ecological Economics, Elsevier, vol. 157(C), pages 71-79.
    3. Jin Huang & Hao Yang & Wei He & Yu Li, 2022. "Ecological Service Value Tradeoffs: An Ecological Water Replenishment Model for the Jilin Momoge National Nature Reserve, China," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    4. Juan Carlos Carrasco Baquero & Verónica Lucía Caballero Serrano & Fernando Romero Cañizares & Daisy Carolina Carrasco López & David Alejandro León Gualán & Rufino Vieira Lanero & Fernando Cobo-Gradín, 2023. "Water Quality Determination Using Soil and Vegetation Communities in the Wetlands of the Andes of Ecuador," Land, MDPI, vol. 12(8), pages 1-18, August.
    5. Paula Meli & Karen D Holl & José María Rey Benayas & Holly P Jones & Peter C Jones & Daniel Montoya & David Moreno Mateos, 2017. "A global review of past land use, climate, and active vs. passive restoration effects on forest recovery," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-17, February.
    6. Aryal, Kishor & Ojha, Bhuwan Raj & Maraseni, Tek, 2021. "Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal," Land Use Policy, Elsevier, vol. 106(C).
    7. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    8. Paula Meli & José María Rey Benayas & Patricia Balvanera & Miguel Martínez Ramos, 2014. "Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    9. Delanie M. Spangler & Anna Christina Tyler & Carmody K. McCalley, 2021. "Effects of Grazer Exclusion on Carbon Cycling in Created Freshwater Wetlands," Land, MDPI, vol. 10(8), pages 1-18, July.
    10. Swades Pal & Satyajit Paul, 2021. "Stability consistency and trend mapping of seasonally inundated wetlands in Moribund deltaic part of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12925-12953, September.
    11. Jiaqi Han & Dongyan Wang & Shuwen Zhang, 2022. "Momoge Internationally Important Wetland: Ecosystem Integrity Remote Assessment and Spatial Pattern Optimization Study," Land, MDPI, vol. 11(8), pages 1-21, August.
    12. Reiss, Kelly Chinners & Hernandez, Erica & Brown, Mark T., 2014. "Application of the landscape development intensity (LDI) index in wetland mitigation banking," Ecological Modelling, Elsevier, vol. 271(C), pages 83-89.
    13. Alex C Valach & Kuno Kasak & Kyle S Hemes & Tyler L Anthony & Iryna Dronova & Sophie Taddeo & Whendee L Silver & Daphne Szutu & Joseph Verfaillie & Dennis D Baldocchi, 2021. "Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-22, March.
    14. Jonas Nordström & Cecilia Hammarlund, 2021. "You Win Some, You Lose Some: Compensating the Loss of Green Space in Cities Considering Heterogeneous Population Characteristics," Land, MDPI, vol. 10(11), pages 1-20, October.
    15. Jacob, Céline & Vaissiere, Anne-Charlotte & Bas, Adeline & Calvet, Coralie, 2016. "Investigating the inclusion of ecosystem services in biodiversity offsetting," Ecosystem Services, Elsevier, vol. 21(PA), pages 92-102.
    16. Van Dover, C.L. & Aronson, J. & Pendleton, L. & Smith, S. & Arnaud-Haond, S. & Moreno-Mateos, D. & Barbier, E. & Billett, D. & Bowers, K. & Danovaro, R. & Edwards, A. & Kellert, S. & Morato, T. & Poll, 2014. "Ecological restoration in the deep sea: Desiderata," Marine Policy, Elsevier, vol. 44(C), pages 98-106.
    17. Michael C. Hassett & Alan D. Steinman, 2022. "Wetland Restoration through Excavation: Sediment Removal Results in Dramatic Water Quality Improvement," Land, MDPI, vol. 11(9), pages 1-17, September.
    18. Jenneke M. Visser & Scott M. Duke-Sylvester, 2017. "LaVegMod v2: Modeling Coastal Vegetation Dynamics in Response to Proposed Coastal Restoration and Protection Projects in Louisiana, USA," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    19. Anne-Charlotte Vaissière & Fabien Quétier & Adeline Bierry & Clémence Vannier & Florence Baptist & Sandra Lavorel, 2021. "Modeling Alternative Approaches to the Biodiversity Offsetting of Urban Expansion in the Grenoble Area (France): What Is the Role of Spatial Scales in ‘No Net Loss’ of Wetland Area and Function?," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    20. Sponagel, Christian & Angenendt, Elisabeth & Piepho, Hans-Peter & Bahrs, Enno, 2021. "Farmers’ preferences for nature conservation compensation measures with a focus on eco-accounts according to the German Nature Conservation Act," Land Use Policy, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3923-:d:356528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.