IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2042-d329426.html
   My bibliography  Save this article

“Separation of Vehicle and Battery” of Private Electric Vehicles and Customer Delivered Value: Based on the Attempt of 2 Chinese EV Companies

Author

Listed:
  • Shuxia Yang

    (Beijing Key Laboratory of New Energy and Low-Carbon Development (North China Electric Power University), Beijing 102206, China)

  • Ruoyang Li

    (State grid Beijing Electric Power Company, Beijing 100054, China)

  • Jialin Li

    (Energy policy research center, Beijing University of Technology, Beijing 100124, China)

Abstract

Electric vehicles are an effective tool to reduce vehicle born emissions from road transportation. Faced with major pollution issues, China is committed to vigorously promoting electric vehicles. China has made active efforts in subsidies, policies, charging facilities, business models, etc., so that the annual growth rate of electric vehicle sales has accelerated. State subsidies have greatly promoted the use of electric vehicles, but the government is gradually reducing subsidies. In the case of government subsidy decline or even zero subsidy, “separation of vehicle and battery” is considered to be a good mode for solving the development of private EVs. The battery of an electric vehicle does not form a whole with the chassis, but they could be physically separated, replacing the battery with one which is fully charged instead of charging by users themselves, substituting battery leases for battery purchases, called separation of vehicle and battery. However, a series of issues such as whether this mode is beneficial to consumers, whether it has competitive advantages for vehicle companies, and what difficulties exist need to be further studied. This paper firstly analyzes whether it is necessary to implement “separation of vehicle and battery” for private electric vehicles (SEPARATION) in China. Based on this, it sums up the attempts of two companies to implement SEPARATION and extracts the key factors involved in SEPARATION. Then, such key factors are analyzed, and the customer delivered value model of SEPARATION is established. Finally, this article discusses the predicament of SEPARATION and makes some recommendations for the implementation of SEPARATION in China. The innovations in this paper include: (1) Analyzing the issue of SEPARATION from the perspective of customer delivered value. (2) Proposing a customer delivered value model of SEPARATION for the first time. (3) Proposing a two-level battery replacement network in the SEPARATION mode.

Suggested Citation

  • Shuxia Yang & Ruoyang Li & Jialin Li, 2020. "“Separation of Vehicle and Battery” of Private Electric Vehicles and Customer Delivered Value: Based on the Attempt of 2 Chinese EV Companies," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2042-:d:329426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuxia Yang & Di Zhang & Jing Fu & Shujing Fan & Yu Ji, 2018. "Market Cultivation of Electric Vehicles in China: A Survey Based on Consumer Behavior," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    2. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Arne Jeppe & Heike Proff & Max Eickhoff, 2023. "Economic Potentials of Ecologically Attractive Multi-Life Products—The Example of Lithium-Ion Batteries," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    3. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wei & Ming Cao & Qianling Jiang & Sheng-Jung Ou & Hong Zou, 2020. "What Influences Chinese Consumers’ Adoption of Battery Electric Vehicles? A Preliminary Study Based on Factor Analysis," Energies, MDPI, vol. 13(5), pages 1-15, February.
    2. Wang, Yaxian & Zhao, Zhenli & Baležentis, Tomas, 2023. "Benefit distribution in shared private charging pile projects based on modified Shapley value," Energy, Elsevier, vol. 263(PB).
    3. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    4. Shuxia Yang & Yu Ji & Di Zhang & Jing Fu, 2019. "Equilibrium between Road Traffic Congestion and Low-Carbon Economy: A Case Study from Beijing, China," Sustainability, MDPI, vol. 11(1), pages 1-22, January.
    5. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    6. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    7. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    8. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    9. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    10. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    11. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    12. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    13. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    14. Arlt, Marie-Louise & Astier, Nicolas, 2023. "Do retail businesses have efficient incentives to invest in public charging stations for electric vehicles?," Energy Economics, Elsevier, vol. 124(C).
    15. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "Empirical Analysis of Parking Behaviour of Conventional and Electric Vehicles for Parking Modelling: A Case Study of Beijing, China," Energies, MDPI, vol. 12(16), pages 1-21, August.
    16. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    17. Corneliu Marinescu, 2021. "Design Consideration Regarding a Residential Renewable-Based Microgrid with EV Charging Station Capabilities," Energies, MDPI, vol. 14(16), pages 1-13, August.
    18. Bhat, Furqan A. & Verma, Ashish, 2024. "Electric two-wheeler adoption in India – A discrete choice analysis of motivators and barriers affecting the potential electric two-wheeler buyers," Transport Policy, Elsevier, vol. 152(C), pages 118-131.
    19. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    20. Fayez Alanazi & Talal Obaid Alshammari & Abdelhalim Azam, 2023. "Optimal Charging Station Placement and Scheduling for Electric Vehicles in Smart Cities," Sustainability, MDPI, vol. 15(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2042-:d:329426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.