IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1721-d324939.html
   My bibliography  Save this article

Climate Change Adaptation Measures for Buildings—A Scoping Review

Author

Listed:
  • Anna Eknes Stagrum

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway)

  • Erlend Andenæs

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway)

  • Tore Kvande

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway)

  • Jardar Lohne

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway)

Abstract

As the climate changes globally and locally, the built environment will be subject to different climatic exposure than in the past. Adaptation measures are required to ensure the long-term integrity and successful operation of the built environment. This study examines literature on climate adaptation measures for buildings through a scoping literature review. It is centered around the main journals in the field of climate adaptation of the built environment, then expanded to map the extent of scientific publications about climate adaptation in general. Studies that regard future climate scenarios have been of particular interest. The majority of the identified literature concerns climate change impacts on buildings in warm climates, with overheating being seen as the greatest challenge. Additionally, few empirical studies are found; most identified research is based on computer simulations or literature reviews. The volume of research on the consequences of climate change on buildings in cold regions is surprisingly small, considering the pecuniary stakes involved. The predictions of climate scenarios suggest regulatory/policy measures on climate adaptation should be taken as quickly as possible to avoid greater costs in the future. However, further research into future scenarios is also essential.

Suggested Citation

  • Anna Eknes Stagrum & Erlend Andenæs & Tore Kvande & Jardar Lohne, 2020. "Climate Change Adaptation Measures for Buildings—A Scoping Review," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1721-:d:324939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patidar, Sandhya & Jenkins, David & Banfill, Phil & Gibson, Gavin, 2014. "Simple statistical model for complex probabilistic climate projections: Overheating risk and extreme events," Renewable Energy, Elsevier, vol. 61(C), pages 23-28.
    2. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    3. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    4. Jim, C.Y., 2014. "Passive warming of indoor space induced by tropical green roof in winter," Energy, Elsevier, vol. 68(C), pages 272-282.
    5. Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
    6. San José, Roberto & Pérez, Juan Luis & Pérez, Libia & Gonzalez Barras, Rosa Maria, 2018. "Effects of climate change on the health of citizens modelling urban weather and air pollution," Energy, Elsevier, vol. 165(PA), pages 53-62.
    7. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Ledda & Elisabetta Anna Di Cesare & Giovanni Satta & Gianluca Cocco & Giovanna Calia & Filippo Arras & Annalisa Congiu & Emanuela Manca & Andrea De Montis, 2020. "Adaptation to Climate Change and Regional Planning: A Scrutiny of Sectoral Instruments," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    2. Agnieszka Jaszczak & Katarina Kristianova & Ewelina Pochodyła & Jan K. Kazak & Krzysztof Młynarczyk, 2021. "Revitalization of Public Spaces in Cittaslow Towns: Recent Urban Redevelopment in Central Europe," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
    3. Ransi Salika Athauda & Shashini Jayakodi & Ashan Senel Asmone & Sheila Conejos, 2023. "Climate Change Impacts on Occupational Health and Safety of Façade Maintenance Workers: A Qualitative Study," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    4. Małgorzata Wojtkowska & Agnieszka Malesińska & Agnieszka Machowska & Pierfabrizio Puntorieri & Giuseppe Barbaro & Vincenzo Fiamma & Stanisław Biedugnis, 2022. "The Influence of Water Quality Change on the Corrosion Process in Galvanized Pipes of Fire Protection Installations," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    5. Kamil Pochwat & Sabina Kordana-Obuch & Mariusz Starzec & Beata Piotrowska, 2020. "Financial Analysis of the Use of Two Horizontal Drain Water Heat Recovery Units," Energies, MDPI, vol. 13(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    4. Julia Woodhall-Melnik & Caitlin Grogan, 2019. "Perceptions of Mental Health and Wellbeing Following Residential Displacement and Damage from the 2018 St. John River Flood," IJERPH, MDPI, vol. 16(21), pages 1-18, October.
    5. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    7. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    8. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    9. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    10. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    11. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    12. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    14. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    15. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    16. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    18. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    19. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    20. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1721-:d:324939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.