IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1528-d322125.html
   My bibliography  Save this article

Calculation of Residual Surface Subsidence Above Abandoned Longwall Coal Mining

Author

Listed:
  • Ximin Cui

    (Institute of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Yuling Zhao

    (Institute of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    Institute of Mining and Surveying, Hebei University of Engineering, Handan 056038, China)

  • Guorui Wang

    (Institute of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    Land Resources Survey and Monitoring Institute of Ningxia Hui Autonomous Region, Yinchuan 750002, China)

  • Bing Zhang

    (School of Resources and Environmental Science, Shijiazhuang University, Shijiazhuang 050035, China)

  • Chunyi Li

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

Exhausted or abandoned underground longwall mining may lead to long-term residual subsidence on surface land, which can cause some problems when the mined-out land is used for construction, land reclamation and ecological reconstruction. Thus, it is important to assess the stability and suitability of the land with a consideration of residual surface subsidence. Assuming a linear monotonic decrease in the annual residual surface subsidence, the limit of the sum of the annual residual subsidence factor, and continuity between surface subsidence in the last year of the weakening period and the residual surface subsidence in the first year, we establish a model to calculate the duration of residual subsidence and the annual residual surface subsidence factor caused by abandoned longwall coal mining. The duration of residual surface subsidence increases with the increase in mining thickness as well as the factor of extreme residual subsidence. The proposed method can quantitatively calculate the annual residual subsidence, the accumulative residual subsidence, and the potential future accumulative residual subsidence. This approach can be used to reasonably evaluate the stability and suitability of old mining subsidence areas and will be beneficial for the design of mining subsidence land reclamation and ecological reconstruction.

Suggested Citation

  • Ximin Cui & Yuling Zhao & Guorui Wang & Bing Zhang & Chunyi Li, 2020. "Calculation of Residual Surface Subsidence Above Abandoned Longwall Coal Mining," Sustainability, MDPI, vol. 12(4), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1528-:d:322125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1528/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhu Bai & Xueyi Li & Wenbing Guo & Yi Tan & Mingjie Guo & Peng Wen & Zhibao Ma, 2022. "Characteristics and Formation Mechanism of Surface Residual Deformation above Longwall Abandoned Goaf," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    2. Chunyi Li & Laizhong Ding & Ximin Cui & Yuling Zhao & Yihang He & Wenzhi Zhang & Zhihui Bai, 2022. "Calculation Model for Progressive Residual Surface Subsidence above Mined-Out Areas Based on Logistic Time Function," Energies, MDPI, vol. 15(14), pages 1-20, July.
    3. Li Li & Dezhong Kong & Qinzhi Liu & Yu Xiong & Fei Chen & Haibing Zhang & Yunyun Chu, 2022. "Comprehensive Identification of Surface Subsidence Evaluation Grades of Mines in Southwest China," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    4. Mateusz Dudek & Anton Sroka & Krzysztof Tajduś & Rafał Misa & Dawid Mrocheń, 2022. "Assessment and Duration of the Surface Subsidence after the End of Mining Operations," Energies, MDPI, vol. 15(22), pages 1-16, November.
    5. Ning Jiang & Ke Lv & Zhiyou Gao & Huixin Di & Junbiao Ma & Tianyi Pan, 2022. "Study on Characteristics of Overburden Strata Structure above Abandoned Gob of Shallow Seams—A Case Study," Energies, MDPI, vol. 15(24), pages 1-22, December.
    6. Takashi Sasaoka & Pisith Mao & Hideki Shimada & Akihiro Hamanaka & Jiro Oya, 2020. "Numerical Analysis of Longwall Gate-Entry Stability under Weak Geological Condition: A Case Study of an Indonesian Coal Mine," Energies, MDPI, vol. 13(18), pages 1-15, September.
    7. Song Guo & Guangli Guo & Xiangsheng Yang & Qiu Du, 2021. "Feasibility of Coupling PS System with Building Protection in an Ultrasoft Strata Colliery," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    8. André Vervoort, 2020. "The Time Duration of the Effects of Total Extraction Mining Methods on Surface Movement," Energies, MDPI, vol. 13(16), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1528-:d:322125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.