Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Ali & Tamer Moussa, 2019. "Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks," Energies, MDPI, vol. 12(11), pages 1-15, June.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Weiqing Chen & Abdulazeez Abdulraheem, 2019. "Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence," Energies, MDPI, vol. 12(19), pages 1-13, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maria Krechowicz & Adam Krechowicz, 2021. "Risk Assessment in Energy Infrastructure Installations by Horizontal Directional Drilling Using Machine Learning," Energies, MDPI, vol. 14(2), pages 1-28, January.
- Fatick Nath & Sarker Monojit Asish & Deepak Ganta & Happy Rani Debi & Gabriel Aguirre & Edgardo Aguirre, 2022. "Artificial Intelligence Model in Predicting Geomechanical Properties for Shale Formation: A Field Case in Permian Basin," Energies, MDPI, vol. 15(22), pages 1-19, November.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
- Miltiadis D. Lytras & Anna Visvizi, 2021. "Artificial Intelligence and Cognitive Computing: Methods, Technologies, Systems, Applications and Policy Making," Sustainability, MDPI, vol. 13(7), pages 1-3, March.
- Mirosława Bukowska & Piotr Kasza & Rafał Moska & Janusz Jureczka, 2022. "The Young’s Modulus and Poisson’s Ratio of Hard Coals in Laboratory Tests," Energies, MDPI, vol. 15(7), pages 1-16, March.
- Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2021. "The Impact of the Geometry of the Effective Propped Volume on the Economic Performance of Shale Gas Well Production," Energies, MDPI, vol. 14(9), pages 1-22, April.
- Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
- Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
- Amjed Hassan & Salaheldin Elkatatny & Abdulazeez Abdulraheem, 2019. "Intelligent Prediction of Minimum Miscibility Pressure (MMP) During CO 2 Flooding Using Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
- Tadeusz Kwilosz & Bogdan Filar & Mariusz Miziołek, 2022. "Use of Cluster Analysis to Group Organic Shale Gas Rocks by Hydrocarbon Generation Zones," Energies, MDPI, vol. 15(4), pages 1-14, February.
- Niaz Muhammad Shahani & Xigui Zheng & Xiaowei Guo & Xin Wei, 2022. "Machine Learning-Based Intelligent Prediction of Elastic Modulus of Rocks at Thar Coalfield," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Weiqing Chen & Abdulazeez Abdulraheem, 2019. "Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence," Energies, MDPI, vol. 12(19), pages 1-13, September.
- Jiangtao Sun & Wei Dang & Fengqin Wang & Haikuan Nie & Xiaoliang Wei & Pei Li & Shaohua Zhang & Yubo Feng & Fei Li, 2023. "Prediction of TOC Content in Organic-Rich Shale Using Machine Learning Algorithms: Comparative Study of Random Forest, Support Vector Machine, and XGBoost," Energies, MDPI, vol. 16(10), pages 1-26, May.
More about this item
Keywords
rate of penetration; drilling optimization; carbonate reservoir; horizontal wells;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1376-:d:320113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.