Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Ali & Tamer Moussa, 2019. "Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks," Energies, MDPI, vol. 12(11), pages 1-15, June.
- Dhafer A. Al-Shehri, 2019. "Oil and Gas Wells: Enhanced Wellbore Casing Integrity Management through Corrosion Rate Prediction Using an Augmented Intelligent Approach," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2021. "The Impact of the Geometry of the Effective Propped Volume on the Economic Performance of Shale Gas Well Production," Energies, MDPI, vol. 14(9), pages 1-22, April.
- Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Ahmad Al-AbdulJabbar & Salaheldin Elkatatny & Ahmed Abdulhamid Mahmoud & Tamer Moussa & Dhafer Al-Shehri & Mahmoud Abughaban & Abdullah Al-Yami, 2020. "Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
- Amjed Hassan & Salaheldin Elkatatny & Abdulazeez Abdulraheem, 2019. "Intelligent Prediction of Minimum Miscibility Pressure (MMP) During CO 2 Flooding Using Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
- Mirosława Bukowska & Piotr Kasza & Rafał Moska & Janusz Jureczka, 2022. "The Young’s Modulus and Poisson’s Ratio of Hard Coals in Laboratory Tests," Energies, MDPI, vol. 15(7), pages 1-16, March.
- Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
- Niaz Muhammad Shahani & Xigui Zheng & Xiaowei Guo & Xin Wei, 2022. "Machine Learning-Based Intelligent Prediction of Elastic Modulus of Rocks at Thar Coalfield," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
- Ahmad Al-AbdulJabbar & Salaheldin Elkatatny & Ahmed Abdulhamid Mahmoud & Tamer Moussa & Dhafer Al-Shehri & Mahmoud Abughaban & Abdullah Al-Yami, 2020. "Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
More about this item
Keywords
hydrocarbon reserve estimation; oil recovery factor; water drive sandy reservoirs; artificial intelligence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3671-:d:270706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.