Use of Cluster Analysis to Group Organic Shale Gas Rocks by Hydrocarbon Generation Zones
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhifeng Zhang & Yongjian Huang & Bo Ran & Wei Liu & Xiang Li & Chengshan Wang, 2021. "Chemostratigraphic Analysis of Wufeng and Longmaxi Formation in Changning, Sichuan, China: Achieved by Principal Component and Constrained Clustering Analysis," Energies, MDPI, vol. 14(21), pages 1-21, October.
- Sebastian Waszkiewicz & Paulina I. Krakowska-Madejska, 2021. "Vitrinite Equivalent Reflectance Estimation from Improved Maturity Indicator and Well Logs Based on Statistical Methods," Energies, MDPI, vol. 14(19), pages 1-16, September.
- Partha Pratim Mandal & Reza Rezaee & Irina Emelyanova, 2021. "Ensemble Learning for Predicting TOC from Well-Logs of the Unconventional Goldwyer Shale," Energies, MDPI, vol. 15(1), pages 1-30, December.
- Edyta Puskarczyk, 2020. "Application of Multivariate Statistical Methods and Artificial Neural Network for Facies Analysis from Well Logs Data: an Example of Miocene Deposits," Energies, MDPI, vol. 13(7), pages 1-18, March.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
- Pan Wang & Suping Peng, 2018. "A New Scheme to Improve the Performance of Artificial Intelligence Techniques for Estimating Total Organic Carbon from Well Logs," Energies, MDPI, vol. 11(4), pages 1-24, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
- Jiangtao Sun & Wei Dang & Fengqin Wang & Haikuan Nie & Xiaoliang Wei & Pei Li & Shaohua Zhang & Yubo Feng & Fei Li, 2023. "Prediction of TOC Content in Organic-Rich Shale Using Machine Learning Algorithms: Comparative Study of Random Forest, Support Vector Machine, and XGBoost," Energies, MDPI, vol. 16(10), pages 1-26, May.
- Miltiadis D. Lytras & Anna Visvizi, 2021. "Artificial Intelligence and Cognitive Computing: Methods, Technologies, Systems, Applications and Policy Making," Sustainability, MDPI, vol. 13(7), pages 1-3, March.
- Mkono, Christopher N. & Chuanbo, Shen & Mulashani, Alvin K. & Mwakipunda, Grant Charles, 2023. "Deep learning integrated approach for hydrocarbon source rock evaluation and geochemical indicators prediction in the Jurassic - Paleogene of the Mandawa basin, SE Tanzania," Energy, Elsevier, vol. 284(C).
- Guangjuan Fan & Ting Dong & Yuejun Zhao & Yalou Zhou & Wentong Zhao & Jie Wang & Yilong Wang, 2023. "Establishment and Application of a Pattern for Identifying Sedimentary Microfacies of a Single Horizontal Well: An Example from the Eastern Transition Block in the Daqing Oilfield, Songliao Basin, Chi," Energies, MDPI, vol. 16(20), pages 1-19, October.
- Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Liang Sun & Suping Peng & Dengke He, 2018. "A Novel Static Correction Approach for Eliminating the Effect of Geophones—A Case Study in Coal Reservoirs, Ordos Basin, China," Energies, MDPI, vol. 11(12), pages 1-12, November.
- Ewa Krzeszowska, 2024. "Chemostratigraphic Approach to the Study of Resources’ Deposit in the Upper Silesian Coal Basin (Poland)," Energies, MDPI, vol. 17(3), pages 1-21, January.
- Sebastian Waszkiewicz & Paulina I. Krakowska-Madejska, 2021. "Vitrinite Equivalent Reflectance Estimation from Improved Maturity Indicator and Well Logs Based on Statistical Methods," Energies, MDPI, vol. 14(19), pages 1-16, September.
- Stanisław Baudzis & Joanna Karłowska-Pik & Edyta Puskarczyk, 2021. "Electrofacies as a Tool for the Prediction of True Resistivity Using Advanced Statistical Methods—Case Study," Energies, MDPI, vol. 14(19), pages 1-18, September.
- Ahmad Al-AbdulJabbar & Salaheldin Elkatatny & Ahmed Abdulhamid Mahmoud & Tamer Moussa & Dhafer Al-Shehri & Mahmoud Abughaban & Abdullah Al-Yami, 2020. "Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
More about this item
Keywords
unconventional resources; shale gas; oil gas; total organic carbon (TOC); cluster analysis; genetic type of kerogen;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1464-:d:751276. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.