IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p996-d314523.html
   My bibliography  Save this article

Competition and Game of the Pre-Installed Market and Post-Installed Market of the Internet of Vehicles from the Perspective of Cooperation

Author

Listed:
  • Chaohui Zhang

    (School of Business, Jilin University, Changchun 130012, China)

  • Yijing Li

    (School of Business, Jilin University, Changchun 130012, China)

  • Yishan Zhang

    (Centre for Quantitative Economics, Jilin University, Changchun 130012, China)

Abstract

The Internet of Vehicles market is broadly divided into two parts—the pre-installed market and the post-installed market. Although they possibly have cooperative relationships, there is a competition game between them in terms of interests, and a healthy game relationship can promote the optimization of products and the overall improvement of the service level in the Internet of Vehicles market. Through the evolutionary game model, this article analyzes the dynamic game process between the pre-installed market and the post-installed market of the Internet of Vehicles, explores the various evolution trends of the Internet of Vehicles market from the perspective of cooperation, and combines the numerical simulation analysis to study the three possible evolutionary trends and corresponding steady states. The results show that, when the cooperation ratio is relatively high, both sides of the game are in the cyclical competition and game, which is the optimal competition state of the Internet of Vehicles market. On the contrary, any kind of “steady state” is unfavorable to the overall market. Therefore, all parties should be encouraged to establish a deeper level of cooperation and jointly promote the further prosperity of the Internet of Vehicles market in the process of cooperation and competition.

Suggested Citation

  • Chaohui Zhang & Yijing Li & Yishan Zhang, 2020. "Competition and Game of the Pre-Installed Market and Post-Installed Market of the Internet of Vehicles from the Perspective of Cooperation," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:996-:d:314523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    2. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
    5. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    7. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    8. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    9. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    10. Gao, Caihong & Wang, Ziyang & Wang, Shupei & Li, Ying, 2024. "Mitigating oscillations of mixed traffic flows at a signalized intersection: A multiagent trajectory optimization approach based on oscillation prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    11. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Maria Nadia Postorino & Giuseppe M. L. Sarné, 2020. "Reinventing Mobility Paradigms: Flying Car Scenarios and Challenges for Urban Mobility," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    13. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    14. Liu, Bo & Zhang, Geng, 2021. "A double velocity control method for a discrete-time cooperative driving system with varying time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    15. Luo, Ying & Chen, Yanyan & Lu, Kaiming & Chen, Liang & Zhang, Jian, 2024. "Modeling and analysis of heterogeneous traffic flow considering dynamic information flow topology and driving behavioral characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    16. Hui, Fei & Wei, Cheng & ShangGuan, Wei & Ando, Ryosuke & Fang, Shan, 2022. "Deep encoder–decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    17. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    18. Kang, Chengjun & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Zhang, Futao, 2024. "Analysis of stability, energy consumption and CO2 emissions in novel discrete-time car-following model with time delay under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    19. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
    20. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:996-:d:314523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.