IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p969-d314120.html
   My bibliography  Save this article

A Multi-Period Product Recommender System in Online Food Market based on Recurrent Neural Networks

Author

Listed:
  • Hea In Lee

    (Department of Social Network Science, Kyunghee University, Seoul 02447, Korea)

  • Il Young Choi

    (Graduate School of Business Administration & AI Research Management Center, Kyunghee University, Seoul 02447, Korea)

  • Hyun Sil Moon

    (Graduate School of Business Administration & AI Research Management Center, Kyunghee University, Seoul 02447, Korea)

  • Jae Kyeong Kim

    (School of Management, Kyunghee University, Seoul 02447, Korea)

Abstract

A recommender system supports customers to find information, products, or services (such as music, books, movies, web sites, and digital contents), so it could help customers to make rapid routine decisions and save their time and money. However, most existing recommender systems do not recommend items that are already purchased by the target customer, so are not suitable for considering customers’ repetitive purchase behavior or purchasing order. In this research, we suggest a multi-period product recommender system, which can learn customers’ purchasing order and customers’ repetitive purchase pattern. For such a purpose we applied the Recurrent Neural Network (RNN), which is one of the artificial neural network structures specialized in time series data analysis, instead of collaborative filtering techniques. Recommendation periods are segmented as various time-steps, and the proposed RNN-based recommender system can recommend items by multiple periods in a time sequence. Several experiments with real online food market data show that the proposed system shows higher performance in accuracy and diversity in a multi-period perspective than the collaborative filtering-based system. From the experimental results, we conclude that the proposed system is suitable for multi-period product recommendation, which results in robust performance considering well customers’ purchasing orders and customers’ repetitive purchase patterns. Moreover, in terms of sustainability, we expect that our study contributes to the reduction of food wastes by inducing planned consumption, and the reduction of shopping time and effort.

Suggested Citation

  • Hea In Lee & Il Young Choi & Hyun Sil Moon & Jae Kyeong Kim, 2020. "A Multi-Period Product Recommender System in Online Food Market based on Recurrent Neural Networks," Sustainability, MDPI, vol. 12(3), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:969-:d:314120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liran Einav & Jonathan Levin & Igor Popov & Neel Sundaresan, 2014. "Growth, Adoption, and Use of Mobile E-Commerce," American Economic Review, American Economic Association, vol. 104(5), pages 489-494, May.
    2. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaekyeong Kim & Ilyoung Choi & Qinglong Li, 2021. "Customer Satisfaction of Recommender System: Examining Accuracy and Diversity in Several Types of Recommendation Approaches," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    2. Farah Tawfiq Abdul Hussien & Abdul Monem S. Rahma & Hala B. Abdulwahab, 2021. "An E-Commerce Recommendation System Based on Dynamic Analysis of Customer Behavior," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    3. Kyoung Jun Lee & Yujeong Hwangbo & Baek Jeong & Jiwoong Yoo & Kyung Yang Park, 2021. "Extrapolative Collaborative Filtering Recommendation System with Word2Vec for Purchased Product for SMEs," Sustainability, MDPI, vol. 13(13), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Anson & Mauro Boffa, 2018. "Consumer Arbitrage in Cross-Border E-commerce," RSCAS Working Papers 2018/17, European University Institute.
    2. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    3. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    4. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    5. Chao Wang & Ilaria Dalla Pozza, 2014. "The antecedents of customer lifetime duration and discounted expected transactions: Discrete-time based transaction data analysis," Working Papers 2014-203, Department of Research, Ipag Business School.
    6. Eymann, Torsten (Ed.), 2009. "Tagungsband zum Doctoral Consortium der WI 2009 [WI2009 Doctoral Consortium Proceedings]," Bayreuth Reports on Information Systems Management 40, University of Bayreuth, Chair of Information Systems Management.
    7. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    8. Makoto Abe, 2009. "Customer Lifetime Value and RFM Data: Accounting Your Customers: One by One," CIRJE F-Series CIRJE-F-616, CIRJE, Faculty of Economics, University of Tokyo.
    9. John Robst & Kimmarie McGOLDRICK, 1999. "The Measurement of Firm Information About Product Demand," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 15(2), pages 149-163, September.
    10. Martin Quinn & Miguel Godinho de Matos & Christian Peukert, 2022. "The Welfare Effects of Mobile Internet Access - Evidence from Roam-Like-at-Home," CESifo Working Paper Series 9612, CESifo.
    11. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    12. Stephan Curiskis & Xiaojing Dong & Fan Jiang & Mark Scarr, 2023. "A novel approach to predicting customer lifetime value in B2B SaaS companies," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 587-601, December.
    13. Füsun F. Gönül & Frenkel Ter Hofstede, 2006. "How to Compute Optimal Catalog Mailing Decisions," Marketing Science, INFORMS, vol. 25(1), pages 65-74, 01-02.
    14. Liu, Feng & Zhao, Shaoqiong & Li, Yang, 2017. "How many, how often, and how new? A multivariate profiling of mobile app users," Journal of Retailing and Consumer Services, Elsevier, vol. 38(C), pages 71-80.
    15. Verhoef, P.C. & Donkers, A.C.D., 2001. "Predicting Customer Potential Value: an application in the insurance industry," ERIM Report Series Research in Management ERS-2001-01-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    17. Yang, Seungmi & Kwon, Youngsun, 2021. "Estimating the effects of Covid-19 and 5G in the submarkets of internet and mobile shopping," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238061, International Telecommunications Society (ITS).
    18. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    19. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    20. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:969-:d:314120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.