IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p681-d309892.html
   My bibliography  Save this article

Investigation of Nighttime Light Pollution in Nanjing, China by Mapping Illuminance from Field Observations and Luojia 1-01 Imagery

Author

Listed:
  • Jiayi Li

    (School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Yongming Xu

    (School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Weiping Cui

    (School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Meng Ji

    (School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Boyang Su

    (School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Yuyang Wu

    (School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Jing Wang

    (School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

In recent years, the number of artificial light sources has tremendously increased with the development of lighting technology and the economy. Nighttime light pollution has been an increasing environmental problem, resulting in negative impacts on human health and the ecological environment. Detailed knowledge of light pollution is important for the planning and management of urban lighting. In this study, light pollution in Nanjing, China was monitored and analyzed using field observations and a 130-m resolution Luojia 1-01 nighttime light imagery. Combined with in situ observations and satellite imagery, a variety of empirical models were established for estimating ambient illuminance at night. Cross-validation was employed to assess the performance of these models, indicating that the third-degree polynomials model had the best performance (MAE = 5.06 lx, R 2 = 0.81). The developed third-degree polynomial model was then applied to the Luojia 1-01 image to map the nighttime illuminance in Nanjing. The nighttime illuminance depicted the spatial pattern of the light environment over Nanjing and also indicated some heavily light-polluted areas. Some lit areas were residential areas, whose high brightness had negative effects on residents and need particular attention. This study provides a quantitative and objective reference for the light pollution management in Nanjing, and also a reference for light pollution survey in other regions.

Suggested Citation

  • Jiayi Li & Yongming Xu & Weiping Cui & Meng Ji & Boyang Su & Yuyang Wu & Jing Wang, 2020. "Investigation of Nighttime Light Pollution in Nanjing, China by Mapping Illuminance from Field Observations and Luojia 1-01 Imagery," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:681-:d:309892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gallaway, Terrel & Olsen, Reed N. & Mitchell, David M., 2010. "The economics of global light pollution," Ecological Economics, Elsevier, vol. 69(3), pages 658-665, January.
    2. Xueting Jin & Yu Li & Jinzhou Zhang & Ji Zheng & Huiping Liu, 2017. "An Approach to Evaluating Light Pollution in Residential Zones: A Case Study of Beijing," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    3. Hong Soo Lim & Jack Ngarambe & Jeong Tai Kim & Gon Kim, 2018. "The Reality of Light Pollution: A Field Survey for the Determination of Lighting Environmental Management Zones in South Korea," Sustainability, MDPI, vol. 10(2), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Skarżyński & Anna Rutkowska, 2023. "The Interplay between Parameters of Light Pollution and Energy Efficiency for Outdoor Amenity Lighting," Energies, MDPI, vol. 16(8), pages 1-14, April.
    2. Piotr Tomczuk & Marcin Chrzanowicz & Piotr Jaskowski & Marcin Budzynski, 2021. "Evaluation of Street Lighting Efficiency Using a Mobile Measurement System," Energies, MDPI, vol. 14(13), pages 1-25, June.
    3. Przemyslaw Tabaka & Pawel Rozga, 2020. "Influence of a Light Source Installed in a Luminaire of Opal Sphere Type on the Effect of Light Pollution," Energies, MDPI, vol. 13(2), pages 1-19, January.
    4. Kienast, Felix & Frick, Jacqueline & van Strien, Maarten J. & Hunziker, Marcel, 2015. "The Swiss Landscape Monitoring Program – A comprehensive indicator set to measure landscape change," Ecological Modelling, Elsevier, vol. 295(C), pages 136-150.
    5. Tran Quang, Tuyen, 2014. "Determinants of nonfarm participation among ethnic minorities in the Northwest Mountains, Vietnam," MPRA Paper 59158, University Library of Munich, Germany, revised 08 Oct 2014.
    6. Salvador Bará & Raul C. Lima & Jaime Zamorano, 2019. "Monitoring Long-Term Trends in the Anthropogenic Night Sky Brightness," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    7. Antonio Peña-García & Thi Phuoc Lai Nguyen, 2018. "A Global Perspective for Sustainable Highway Tunnel Lighting Regulations: Greater Road Safety with a Lower Environmental Impact," IJERPH, MDPI, vol. 15(12), pages 1-9, November.
    8. Quang Tran, Tuyen & Hong Nguyen, Son & Van Vu, Huong & Quoc Nguyen, Viet, 2014. "Determinants of poverty among ethnic minorities in the Northwest region, Vietnam," MPRA Paper 59144, University Library of Munich, Germany, revised 01 Oct 2014.
    9. Mintai Kim & SangHyun Cheon & Youngeun Kang, 2019. "Use of Electroencephalography (EEG) for the Analysis of Emotional Perception and Fear to Nightscapes," Sustainability, MDPI, vol. 11(1), pages 1-15, January.
    10. Jack Ngarambe & Gon Kim, 2018. "Sustainable Lighting Policies: The Contribution of Advertisement and Decorative Lighting to Local Light Pollution in Seoul, South Korea," Sustainability, MDPI, vol. 10(4), pages 1-11, March.
    11. Annika K. Jägerbrand, 2020. "Synergies and Trade-Offs Between Sustainable Development and Energy Performance of Exterior Lighting," Energies, MDPI, vol. 13(9), pages 1-27, May.
    12. Kwang-Hoon Kim & Gon Kim, 2021. "Using Simulation-Based Modeling to Evaluate Light Trespass in the Design Stage of Sports Facilities," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    13. Anna Beniermann & Martin Glos & Heike Schumacher & Ingo Fietze & Stephan Völker & Annette Upmeier zu Belzen, 2023. "‘Sleep Blindness’ in Science Education: How Sleep Health Literacy Can Serve as a Link between Health Education and Education for Sustainable Development," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    14. Alina Svechkina & Tamar Trop & Boris A. Portnov, 2020. "How Much Lighting is Required to Feel Safe When Walking Through the Streets at Night?," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    15. Krzysztof Skarżyński & Wojciech Żagan, 2022. "Quantitative Assessment of Architectural Lighting Designs," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    16. Steinkraus, Arne, 2016. "Investigating the carbon leakage effect on the environmental Kuznets curve using luminosity data," Economics Department Working Paper Series 15, Technische Universität Braunschweig, Economics Department.
    17. Domenico Campisi & Simone Gitto & Donato Morea, 2017. "Light Emitting Diodes Technology in Public Light System of the Municipality of Rome: An Economic and Financial Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 200-208.
    18. Ping-Huan Kuo & Hsin-Chuan Chen & Chiou-Jye Huang, 2018. "Solar Radiation Estimation Algorithm and Field Verification in Taiwan," Energies, MDPI, vol. 11(6), pages 1-12, May.
    19. Karolina M. Zielińska-Dabkowska & Kyra Xavia & Katarzyna Bobkowska, 2020. "Assessment of Citizens’ Actions against Light Pollution with Guidelines for Future Initiatives," Sustainability, MDPI, vol. 12(12), pages 1-32, June.
    20. Liangkun Fang & Zhangjie Wu & Yuan Tao & Jinfeng Gao, 2023. "Light Pollution Index System Model Based on Markov Random Field," Mathematics, MDPI, vol. 11(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:681-:d:309892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.