IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9607-d446965.html
   My bibliography  Save this article

An Online Novel Two-Layered Photovoltaic Fault Monitoring Technique Based Upon the Thermal Signatures

Author

Listed:
  • Qamar Navid

    (Emirates Centre for Energy & Environment Research, United Arab Emirates University, 15551 Al Ain, UAE)

  • Ahmed Hassan

    (Department of Architecture Engineering, College of Engineering, United Arab Emirates University, 15551 Al Ain, UAE)

  • Abbas Ahmad Fardoun

    (Department of Electrical and Electronic Engineering, Al Mareef University, Beirut 1001, Lebanon)

  • Rashad Ramzan

    (Department of Electrical Engineering, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan)

Abstract

The share of photovoltaic (PV) power generation in the energy mix is increasing at a rapid pace with dramatically increasing capacity addition through utility-scale PV power plants globally. As PV plants are forecasted to be a major energy generator in the future, their reliable operation remains of primary concern due to a possibility of faults in a tremendously huge number of PV panels involved in power generation in larger plants. The precise detection of nature and the location of the faults along with a prompt remedial mechanism is deemed crucial for smoother power plant operation. The existing fault diagnostic methodologies based on thermal imaging of the panels as well as electrical parameters through inverter possess certain limitations. The current article deals with a novel fault diagnostic technique based on PV panel electrical parameters and junction temperatures that can precisely locate and categorize the faults. The proposed scheme has been tested on a 1.6 kW photovoltaic system for short circuit, open circuit, grounding, and partial shading faults. The proposed method showed improved accuracy compared to thermal imaging on panel scale fault detection, offering a possibility to adapt to the PV plant scale.

Suggested Citation

  • Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan, 2020. "An Online Novel Two-Layered Photovoltaic Fault Monitoring Technique Based Upon the Thermal Signatures," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9607-:d:446965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saba Gul & Azhar Ul Haq & Marium Jalal & Almas Anjum & Ihsan Ullah Khalil, 2019. "A Unified Approach for Analysis of Faults in Different Configurations of PV Arrays and Its Impact on Power Grid," Energies, MDPI, vol. 13(1), pages 1-23, December.
    2. Hussain, Muhammed & Dhimish, Mahmoud & Titarenko, Sofya & Mather, Peter, 2020. "Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters," Renewable Energy, Elsevier, vol. 155(C), pages 1272-1292.
    3. Gomathy Balasubramani & Venkatesan Thangavelu & Muniraj Chinnusamy & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2020. "Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation," Energies, MDPI, vol. 13(6), pages 1-14, March.
    4. Varaha Satya Bharath Kurukuru & Frede Blaabjerg & Mohammed Ali Khan & Ahteshamul Haque, 2020. "A Novel Fault Classification Approach for Photovoltaic Systems," Energies, MDPI, vol. 13(2), pages 1-17, January.
    5. Chine, W. & Mellit, A. & Pavan, A. Massi & Kalogirou, S.A., 2014. "Fault detection method for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 66(C), pages 99-110.
    6. Sufyan Samara & Emad Natsheh, 2020. "Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    7. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
    2. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    3. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    5. Qu, Jiaqi & Qian, Zheng & Pei, Yan & Wei, Lu & Zareipour, Hamidreza & Sun, Qiang, 2022. "An unsupervised hourly weather status pattern recognition and blending fitting model for PV system fault detection," Applied Energy, Elsevier, vol. 319(C).
    6. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    7. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    8. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    9. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    10. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    11. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.
    12. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    13. Collin Barker & Sam Cipkar & Tyler Lavigne & Cameron Watson & Maher Azzouz, 2021. "Real-Time Nuisance Fault Detection in Photovoltaic Generation Systems Using a Fine Tree Classifier," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    14. Carlos Toledo & Lucía Serrano-Lujan & Jose Abad & Antonio Lampitelli & Antonio Urbina, 2019. "Measurement of Thermal and Electrical Parameters in Photovoltaic Systems for Predictive and Cross-Correlated Monitorization," Energies, MDPI, vol. 12(4), pages 1-20, February.
    15. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    16. Odysseas Tsafarakis & Kostas Sinapis & Wilfried G. J. H. M. van Sark, 2019. "A Time-Series Data Analysis Methodology for Effective Monitoring of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 12(9), pages 1-18, May.
    17. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    18. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.
    19. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    20. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9607-:d:446965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.