IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9578-d446594.html
   My bibliography  Save this article

Assessing the Environmental and Economic Footprint of Electronic Toll Collection Lanes: A Simulation Study

Author

Listed:
  • Ioannis-Dimosthenis Ramandanis

    (Civil Engineer, School of Civil Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Ioannis Politis

    (Transport Engineering Laboratory, Department of Transport and Project Management, School of Civil Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Socrates Basbas

    (Laboratory of Transportation Planning, Transportation Engineering & Highway Engineering, Department of Transportation & Hydraulic Engineering, School of Rural & Surveying Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

Abstract

Electronic toll collection (ETC) plays, as part of transport demand management (TDM) measures, an important role in preventing traffic congestion and improving the environmental conditions in urban and rural areas. An attempt is made in the framework of this paper to evaluate the overall performance of a toll station when a lane is dedicated to ETC. The case study refers to a toll station in the Thessaloniki Metropolitan Area, Greece. Scenarios considered specific traffic characteristics, variable toll booth setups, and different penetration rates of the ETC tag users for car and heavy vehicles. The tool used in the evaluation process was the PTV Vissim traffic simulation software. The operation of the toll station during a specific peak-hour period was simulated with the aid of the specific software. In total, 39 alternative scenarios were developed and compared to determine the level of penetration rate for which the ETC lane would be effective for different toll booth setups. Results showed that when the right lane of the toll station is converted to ETC lane, the penetration rate of this lane must be greater the 15% for the private vehicles and 20% for the heavy goods vehicles (HGV) to reduce traffic congestion and to improve environmental conditions. It was also found that when an additional ETC lane was introduced to the existing toll station set up, traffic congestion and the associated environmental conditions were much improved even for low penetration rates. It must be noticed that the results from the use of discounted cash flow methods like internal rate of return (IRR), net present value (NPV) and benefit–cost ratio (BCR) showed that all economic indicators converge as penetration rate increases in all toll booth setups. Therefore, there is a specific penetration rate threshold above which the economic viability of the investment is secured. These findings can assist the design of an effective policy in terms of the optimized operation of a toll station and sustainable mobility planning.

Suggested Citation

  • Ioannis-Dimosthenis Ramandanis & Ioannis Politis & Socrates Basbas, 2020. "Assessing the Environmental and Economic Footprint of Electronic Toll Collection Lanes: A Simulation Study," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9578-:d:446594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Levinson, David & Chang, Elva, 2003. "A model for optimizing electronic toll collection systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 293-314, May.
    2. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    3. Eva Brumercikova & Bibiana Bukova & Eva Nedeliakova, 2020. "A Proposal for the Account-Based Ticketing Application in Passenger Transport in the Slovak Republic: A Case Study," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    4. Iseki, Hiroyuki & Demisch, Alexander, 2012. "Examining the linkages between electronic roadway tolling technologies and road pricing policy objectives," Research in Transportation Economics, Elsevier, vol. 36(1), pages 121-132.
    5. Odeck, James, 2019. "Estimating and predicting the operational costs of road tolls: An econometric assessment using panel data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 466-478.
    6. Jiancheng Weng & Ru Wang & Mengjia Wang & Jian Rong, 2015. "Fuel Consumption and Vehicle Emission Models for Evaluating Environmental Impacts of the ETC System," Sustainability, MDPI, vol. 7(7), pages 1-16, July.
    7. Tseng, Po-Hsing & Lin, Dung-Ying & Chien, Steven, 2014. "Investigating the impact of highway electronic toll collection to the external cost: A case study in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 265-272.
    8. Henryk KOMSTA & Eva BRUMERCIKOVA & Bibiana BUKOVA, 2016. "Application Of Nfc Technology In Passenger Rail Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 11(3), pages 43-53, September.
    9. Xijie Li & Ying Lv & Wei Sun & Li Zhou, 2019. "Cordon- or Link-Based Pricing: Environment-Oriented Toll Design Models Development and Application," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    10. Odeck, James & Welde, Morten, 2017. "The accuracy of toll road traffic forecasts: An econometric evaluation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 73-85.
    11. Xinhua Mao & Jiahua Gan & Xilong Zhao, 2019. "Debt Risk Evaluation of Toll Freeways in Mainland China Using the Grey Approach," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vivek Arulnathan & Mohammad Davoud Heidari & Maurice Doyon & Eric P. H. Li & Nathan Pelletier, 2022. "Economic Indicators for Life Cycle Sustainability Assessment: Going beyond Life Cycle Costing," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    2. Maurizio Faccio & Serena Finco & Ilenia Zennaro, 2021. "Sustainable People Home-Work Logistics: An Integrated Model of Circular Economy in the Chiampo Valley," Sustainability, MDPI, vol. 13(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurizio Faccio & Serena Finco & Ilenia Zennaro, 2021. "Sustainable People Home-Work Logistics: An Integrated Model of Circular Economy in the Chiampo Valley," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    2. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    3. Yueru Xu & Chao Wang & Yuan Zheng & Zhuoqun Sun & Zhirui Ye, 2020. "A Model Tree-Based Vehicle Emission Model at Freeway Toll Plazas," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    4. Jean-Philippe Meloche, 2019. "Towards a New Era in Road Pricing? Lessons from the Experience of First Movers," CIRANO Working Papers 2019s-35, CIRANO.
    5. Zapico, Emma & Baños-Pino, José F. & Mayor, Matías, 2024. "Optimal toll rates accounting for traffic accidents: A productive efficiency approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    6. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2022. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Economics of Transportation, Elsevier, vol. 31(C).
    7. Marina Milenković & Miloš Nikolić & Draženko Glavić, 2022. "Optimization of toll road lane operation: Serbian case study," Operational Research, Springer, vol. 22(5), pages 5297-5322, November.
    8. Walker, Joan L. & Chatman, Daniel & Daziano, Ricardo & Erhardt, Gregory & Gao, Song & Mahmassani, Hani & Ory, David & Sall, Elizabeth & Bhat, Chandra & Chim, Nicholas & Daniels, Clint & Gardner, Brian, 2019. "Advancing the Science of Travel Demand Forecasting," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0v1906ts, Institute of Transportation Studies, UC Berkeley.
    9. Odeck, James, 2019. "Estimating and predicting the operational costs of road tolls: An econometric assessment using panel data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 466-478.
    10. Gia-Shie Liu & Kuo-Ping Lin, 2020. "The Online Distribution System of Inventory-Routing Problem with Simultaneous Deliveries and Returns Concerning CO 2 Emission Cost," Mathematics, MDPI, vol. 8(6), pages 1-27, June.
    11. Rødseth, Kenneth Løvold & Wangsness, Paal Brevik & Alexander Gregersen, Fredrik, 2024. "Panel data analysis of drivers under an evolving cordon tolling system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    12. Holgui­n-Veras, Jose & Cetin, Mecit & Xia, Shuwen, 2006. "A comparative analysis of US toll policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 852-871, December.
    13. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
    14. Pengsen Yang & Minghui Ma & Chaoteng Wu, 2024. "Ecologically Oriented Freeway Control Methods Integrated Speed Limits and Ramp Toll Booths Layout," Sustainability, MDPI, vol. 16(11), pages 1-14, May.
    15. Guang Yang & Yan Han & Hao Gong & Tiantian Zhang, 2020. "Spatial-Temporal Response Patterns of Tourist Flow under Real-Time Tourist Flow Diversion Scheme," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    16. Sheu, Jiuh-Biing & Yang, Hai, 2008. "An integrated toll and ramp control methodology for dynamic freeway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4327-4348.
    17. Hoque, Jawad Mahmud & Erhardt, Gregory D. & Schmitt, David & Chen, Mei & Wachs, Martin, 2021. "Estimating the uncertainty of traffic forecasts from their historical accuracy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 339-349.
    18. Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
    19. Irawan, Muhammad Zudhy & Simanjuntak, Nurvita I.M. & Bastarianto, Faza Fawzan & Dwitasari, Reslyana & Herawati,, 2020. "Predicting the impact of Trans Java Toll Roads on demand for intercity air travel in Indonesia," Journal of Air Transport Management, Elsevier, vol. 87(C).
    20. Kangsoo Kim & Jinseog Kim & Hyejin Cho & Donghyung Yook, 2024. "Determining contract conditions in a PPP project among deep uncertainty in future outturn travel demand," Transportation, Springer, vol. 51(3), pages 937-961, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9578-:d:446594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.