IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9428-d444069.html
   My bibliography  Save this article

A Critical Review of Sensors for the Continuous Monitoring of Smart and Sustainable Railway Infrastructures

Author

Listed:
  • Juan Manuel Castillo-Mingorance

    (Laboratory of Construction Engineering, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain)

  • Miguel Sol-Sánchez

    (Laboratory of Construction Engineering, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain)

  • Fernando Moreno-Navarro

    (Laboratory of Construction Engineering, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain)

  • María Carmen Rubio-Gámez

    (Laboratory of Construction Engineering, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain)

Abstract

Real-time and continuous monitoring through smart sensors is considered to be the evolution of traditional track testing, enabling the earlier detection of the main failure modes that degrade railway tracks. Through carrying out preventive maintenance operations, infrastructure resources may be optimized, leading to smarter and more sustainable infrastructure. For this reason, under the larger goal of creating a synergy with various types of sensors for railway tracks, this article presents a critical review on the different, currently available sensors for smart and continuous monitoring. Specifically, the most appropriate monitoring technologies for each of the main railway track failure modes have been assessed and identified, thus deriving the advantages and capacities of each solution. Furthermore, this review presents some of the main experiences carried out to date in literature by using sensor technologies, such as strain gauges, piezoelectric sensors, fiber-optics, geophones and accelerometers. These technologies have proven to offer appropriate characteristics and accuracy for the continuous monitoring of a railway track’s structural state, being capable of measuring different parameters, such as deflections, deformations, stresses or accelerations that would permit the technical tracking of various forms of degradation.

Suggested Citation

  • Juan Manuel Castillo-Mingorance & Miguel Sol-Sánchez & Fernando Moreno-Navarro & María Carmen Rubio-Gámez, 2020. "A Critical Review of Sensors for the Continuous Monitoring of Smart and Sustainable Railway Infrastructures," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9428-:d:444069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georges Kouroussis & Damien Kinet & Véronique Moeyaert & Julien Dupuy & Christophe Caucheteur, 2016. "Railway structure monitoring solutions using fibre Bragg grating sensors," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 4(3), pages 135-150, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Praneeth Chandran & Johnny Asber & Florian Thiery & Johan Odelius & Matti Rantatalo, 2021. "An Investigation of Railway Fastener Detection Using Image Processing and Augmented Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Zheng Zhou & Kaizhi Dong & Ziwei Fang & Yang Liu, 2022. "A Two-Stage Approach for Damage Diagnosis of Structures Based on a Fully Distributed Strain Mode under Multigain Feedback Control," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    3. Joana Duarte & Fernanda Rodrigues & Jacqueline Castelo Branco, 2022. "Sensing Technology Applications in the Mining Industry—A Systematic Review," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    4. Rafael Cardona Huerta & Fernando Moreu & Jose Antonio Lozano Galant, 2021. "Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    5. Iryna Bondarenko & Vaidas Lukoševičius & Robertas Keršys & Larysa Neduzha, 2023. "Investigation of Dynamic Processes of Rolling Stock–Track Interaction: Experimental Realization," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    6. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9428-:d:444069. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.